Cargando…
The Implementation of Precise Point Positioning (PPP): A Comprehensive Review
High-precision positioning from Global Navigation Satellite Systems (GNSS) has garnered increased interest due to growing demand in various applications, like autonomous car navigation and precision agriculture. Precise Point Positioning (PPP) offers a distinct advantage over differential techniques...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650808/ https://www.ncbi.nlm.nih.gov/pubmed/37960573 http://dx.doi.org/10.3390/s23218874 |
_version_ | 1785135866056802304 |
---|---|
author | Elsheikh, Mohamed Iqbal, Umar Noureldin, Aboelmagd Korenberg, Michael |
author_facet | Elsheikh, Mohamed Iqbal, Umar Noureldin, Aboelmagd Korenberg, Michael |
author_sort | Elsheikh, Mohamed |
collection | PubMed |
description | High-precision positioning from Global Navigation Satellite Systems (GNSS) has garnered increased interest due to growing demand in various applications, like autonomous car navigation and precision agriculture. Precise Point Positioning (PPP) offers a distinct advantage over differential techniques by enabling precise position determination of a GNSS rover receiver through the use of external corrections sourced from either the Internet or dedicated correction satellites. However, PPP’s implementation has been challenging due to the need to mitigate numerous GNSS error sources, many of which are eliminated in differential techniques such as Real-Time Kinematics (RTK) or overlooked in Standard Point Positioning (SPP). This paper extensively reviews PPP’s error sources, such as ionospheric delays, tropospheric delays, satellite orbit and clock errors, phase and code biases, and site displacement effects. Additionally, this article examines various PPP models and correction sources that can be employed to address these errors. A detailed discussion is provided on implementing the standard dual-frequency (DF)-PPP to achieve centimeter- or millimeter-level positioning accuracy. This paper includes experimental examples of PPP implementation results using static data from the International GNSS Service (IGS) station network and a kinematic road test based on the actual trajectory to showcase DF-PPP development for practical applications. By providing a fusion of theoretical insights with practical demonstrations, this comprehensive review offers readers a pragmatic perspective on the evolving field of Precise Point Positioning. |
format | Online Article Text |
id | pubmed-10650808 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106508082023-10-31 The Implementation of Precise Point Positioning (PPP): A Comprehensive Review Elsheikh, Mohamed Iqbal, Umar Noureldin, Aboelmagd Korenberg, Michael Sensors (Basel) Review High-precision positioning from Global Navigation Satellite Systems (GNSS) has garnered increased interest due to growing demand in various applications, like autonomous car navigation and precision agriculture. Precise Point Positioning (PPP) offers a distinct advantage over differential techniques by enabling precise position determination of a GNSS rover receiver through the use of external corrections sourced from either the Internet or dedicated correction satellites. However, PPP’s implementation has been challenging due to the need to mitigate numerous GNSS error sources, many of which are eliminated in differential techniques such as Real-Time Kinematics (RTK) or overlooked in Standard Point Positioning (SPP). This paper extensively reviews PPP’s error sources, such as ionospheric delays, tropospheric delays, satellite orbit and clock errors, phase and code biases, and site displacement effects. Additionally, this article examines various PPP models and correction sources that can be employed to address these errors. A detailed discussion is provided on implementing the standard dual-frequency (DF)-PPP to achieve centimeter- or millimeter-level positioning accuracy. This paper includes experimental examples of PPP implementation results using static data from the International GNSS Service (IGS) station network and a kinematic road test based on the actual trajectory to showcase DF-PPP development for practical applications. By providing a fusion of theoretical insights with practical demonstrations, this comprehensive review offers readers a pragmatic perspective on the evolving field of Precise Point Positioning. MDPI 2023-10-31 /pmc/articles/PMC10650808/ /pubmed/37960573 http://dx.doi.org/10.3390/s23218874 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Elsheikh, Mohamed Iqbal, Umar Noureldin, Aboelmagd Korenberg, Michael The Implementation of Precise Point Positioning (PPP): A Comprehensive Review |
title | The Implementation of Precise Point Positioning (PPP): A Comprehensive Review |
title_full | The Implementation of Precise Point Positioning (PPP): A Comprehensive Review |
title_fullStr | The Implementation of Precise Point Positioning (PPP): A Comprehensive Review |
title_full_unstemmed | The Implementation of Precise Point Positioning (PPP): A Comprehensive Review |
title_short | The Implementation of Precise Point Positioning (PPP): A Comprehensive Review |
title_sort | implementation of precise point positioning (ppp): a comprehensive review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650808/ https://www.ncbi.nlm.nih.gov/pubmed/37960573 http://dx.doi.org/10.3390/s23218874 |
work_keys_str_mv | AT elsheikhmohamed theimplementationofprecisepointpositioningpppacomprehensivereview AT iqbalumar theimplementationofprecisepointpositioningpppacomprehensivereview AT noureldinaboelmagd theimplementationofprecisepointpositioningpppacomprehensivereview AT korenbergmichael theimplementationofprecisepointpositioningpppacomprehensivereview AT elsheikhmohamed implementationofprecisepointpositioningpppacomprehensivereview AT iqbalumar implementationofprecisepointpositioningpppacomprehensivereview AT noureldinaboelmagd implementationofprecisepointpositioningpppacomprehensivereview AT korenbergmichael implementationofprecisepointpositioningpppacomprehensivereview |