Cargando…
LWR-Net: Robust and Lightweight Place Recognition Network for Noisy and Low-Density Point Clouds
Point cloud-based retrieval for place recognition is essential in robotic applications like autonomous driving or simultaneous localization and mapping. However, this remains challenging in complex real-world scenes. Existing methods are sensitive to noisy, low-density point clouds and require exten...
Autores principales: | Zhang, Zhenghua, Chen, Guoliang, Shu, Mingcong, Wang, Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650809/ https://www.ncbi.nlm.nih.gov/pubmed/37960364 http://dx.doi.org/10.3390/s23218664 |
Ejemplares similares
-
Robust speaker recognition in noisy environments
por: Rao, K Sreenivasa, et al.
Publicado: (2014) -
Template Attack of LWE/LWR-Based Schemes with Cyclic Message Rotation
por: Chang, Yajing, et al.
Publicado: (2022) -
Platoon Interactions and Real-World Traffic Simulation and Validation Based on the LWR-IM
por: Ng, Kok Mun, et al.
Publicado: (2016) -
DeepMatch: Toward Lightweight in Point Cloud Registration
por: Qi, Lizhe, et al.
Publicado: (2022) -
CloudDenseNet: Lightweight Ground-Based Cloud Classification Method for Large-Scale Datasets Based on Reconstructed DenseNet
por: Li, Sheng, et al.
Publicado: (2023)