Cargando…
A Deep Learning Framework for Anesthesia Depth Prediction from Drug Infusion History
In the target-controlled infusion (TCI) of propofol and remifentanil intravenous anesthesia, accurate prediction of the depth of anesthesia (DOA) is very challenging. Patients with different physiological characteristics have inconsistent pharmacodynamic responses during different stages of anesthes...
Autores principales: | Chen, Mingjin, He, Yongkang, Yang, Zhijing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650919/ https://www.ncbi.nlm.nih.gov/pubmed/37960693 http://dx.doi.org/10.3390/s23218994 |
Ejemplares similares
-
Boosting framework via clinical monitoring data to predict the depth of anesthesia
por: Liu, Yanfei, et al.
Publicado: (2022) -
The optimal anesthetic depth for interventional neuroradiology: comparisons between light anesthesia and deep anesthesia
por: Jung, Yoo Sun, et al.
Publicado: (2015) -
Infusing theory into deep learning for interpretable reactivity prediction
por: Wang, Shih-Han, et al.
Publicado: (2021) -
Removal of Laryngeal Mask Airway in Adults Under Target-Controlled, Propofol–Fentanyl Infusion Anesthesia: Awake or Deep Anesthesia?
por: Huang, Ren-Chih, et al.
Publicado: (2016) -
DeepKhib: A Deep-Learning Framework for Lysine 2-Hydroxyisobutyrylation Sites Prediction
por: Zhang, Luna, et al.
Publicado: (2020)