Cargando…

Response and inversion of skewness parameters to meteorological factors based on RGB model of leaf color digital image

In the natural environment, complex and changeable meteorological factors can influence changes in the internal physiology and phenotype of crops. It is important to learn how to convert complex meteorological factor stimuli into plant perception phenotypes when analyzing the biological data obtaine...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Pei, Chen, Zhengmeng, Wang, Fuzheng, Wu, Hongyan, Hao, Ling, Jiang, Xu, Yu, Zhiming, Zou, Lina, Jiang, Haidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10650994/
https://www.ncbi.nlm.nih.gov/pubmed/37967130
http://dx.doi.org/10.1371/journal.pone.0288818
Descripción
Sumario:In the natural environment, complex and changeable meteorological factors can influence changes in the internal physiology and phenotype of crops. It is important to learn how to convert complex meteorological factor stimuli into plant perception phenotypes when analyzing the biological data obtained under the natural field condition. We restored the true gradation distribution of leaf color, which is also known as the skewed distribution of color scale, and obtained 20 multi-dimensional color gradation skewness-distribution (CGSD) parameters based on the leaf color skewness parameter system. Furthermore, we analyzed the correlation between the five corresponding meteorological factors and canopy CGSD parameters of peppers growing in a greenhouse and cabbages growing in an open air environment, built response model and inversion mode of leaf color to meteorological factors. Based on the analysis, we find a new method for correlating complex environmental problems with multi-dimensional parameters. This study provides a new idea for building a correlation model that uses leaf color as a bridge between meteorological factors and plants internal physiological state.