Cargando…

Machine Learning for Benchmarking Critical Care Outcomes

OBJECTIVES: Enhancing critical care efficacy involves evaluating and improving system functioning. Benchmarking, a retrospective comparison of results against standards, aids risk-adjusted assessment and helps healthcare providers identify areas for improvement based on observed and predicted outcom...

Descripción completa

Detalles Bibliográficos
Autores principales: Atallah, Louis, Nabian, Mohsen, Brochini, Ludmila, Amelung, Pamela J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Medical Informatics 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651403/
https://www.ncbi.nlm.nih.gov/pubmed/37964452
http://dx.doi.org/10.4258/hir.2023.29.4.301
Descripción
Sumario:OBJECTIVES: Enhancing critical care efficacy involves evaluating and improving system functioning. Benchmarking, a retrospective comparison of results against standards, aids risk-adjusted assessment and helps healthcare providers identify areas for improvement based on observed and predicted outcomes. The last two decades have seen the development of several models using machine learning (ML) for clinical outcome prediction. ML is a field of artificial intelligence focused on creating algorithms that enable computers to learn from and make predictions or decisions based on data. This narrative review centers on key discoveries and outcomes to aid clinicians and researchers in selecting the optimal methodology for critical care benchmarking using ML. METHODS: We used PubMed to search the literature from 2003 to 2023 regarding predictive models utilizing ML for mortality (592 articles), length of stay (143 articles), or mechanical ventilation (195 articles). We supplemented the PubMed search with Google Scholar, making sure relevant articles were included. Given the narrative style, papers in the cohort were manually curated for a comprehensive reader perspective. RESULTS: Our report presents comparative results for benchmarked outcomes and emphasizes advancements in feature types, preprocessing, model selection, and validation. It showcases instances where ML effectively tackled critical care outcome-prediction challenges, including nonlinear relationships, class imbalances, missing data, and documentation variability, leading to enhanced results. CONCLUSIONS: Although ML has provided novel tools to improve the benchmarking of critical care outcomes, areas that require further research include class imbalance, fairness, improved calibration, generalizability, and long-term validation of published models.