Cargando…
Machine Learning for Benchmarking Critical Care Outcomes
OBJECTIVES: Enhancing critical care efficacy involves evaluating and improving system functioning. Benchmarking, a retrospective comparison of results against standards, aids risk-adjusted assessment and helps healthcare providers identify areas for improvement based on observed and predicted outcom...
Autores principales: | Atallah, Louis, Nabian, Mohsen, Brochini, Ludmila, Amelung, Pamela J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651403/ https://www.ncbi.nlm.nih.gov/pubmed/37964452 http://dx.doi.org/10.4258/hir.2023.29.4.301 |
Ejemplares similares
-
Machine learning prediction of the total duration of invasive and non-invasive ventilation During ICU Stay
por: Schwager, Emma, et al.
Publicado: (2023) -
Benchmarking machine learning models on multi-centre eICU critical care dataset
por: Sheikhalishahi, Seyedmostafa, et al.
Publicado: (2020) -
New perspectives to improve critical care benchmarking
por: Salluh, Jorge I. F., et al.
Publicado: (2018) -
Stochastic oscillations and dragon king avalanches in self-organized quasi-critical systems
por: Kinouchi, Osame, et al.
Publicado: (2019) -
Phase transitions and self-organized criticality in networks of stochastic spiking neurons
por: Brochini, Ludmila, et al.
Publicado: (2016)