Cargando…
A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges
Artificial intelligence (AI) has the potential to transform medical research by improving disease diagnosis, clinical decision-making, and outcome prediction. Despite the rapid adoption of AI and machine learning (ML) in other domains and industry, deployment in medical research and clinical practic...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651597/ https://www.ncbi.nlm.nih.gov/pubmed/37968370 http://dx.doi.org/10.1186/s40634-023-00683-z |
_version_ | 1785147634096275456 |
---|---|
author | Zsidai, Bálint Hilkert, Ann-Sophie Kaarre, Janina Narup, Eric Senorski, Eric Hamrin Grassi, Alberto Ley, Christophe Longo, Umile Giuseppe Herbst, Elmar Hirschmann, Michael T. Kopf, Sebastian Seil, Romain Tischer, Thomas Samuelsson, Kristian Feldt, Robert |
author_facet | Zsidai, Bálint Hilkert, Ann-Sophie Kaarre, Janina Narup, Eric Senorski, Eric Hamrin Grassi, Alberto Ley, Christophe Longo, Umile Giuseppe Herbst, Elmar Hirschmann, Michael T. Kopf, Sebastian Seil, Romain Tischer, Thomas Samuelsson, Kristian Feldt, Robert |
author_sort | Zsidai, Bálint |
collection | PubMed |
description | Artificial intelligence (AI) has the potential to transform medical research by improving disease diagnosis, clinical decision-making, and outcome prediction. Despite the rapid adoption of AI and machine learning (ML) in other domains and industry, deployment in medical research and clinical practice poses several challenges due to the inherent characteristics and barriers of the healthcare sector. Therefore, researchers aiming to perform AI-intensive studies require a fundamental understanding of the key concepts, biases, and clinical safety concerns associated with the use of AI. Through the analysis of large, multimodal datasets, AI has the potential to revolutionize orthopaedic research, with new insights regarding the optimal diagnosis and management of patients affected musculoskeletal injury and disease. The article is the first in a series introducing fundamental concepts and best practices to guide healthcare professionals and researcher interested in performing AI-intensive orthopaedic research studies. The vast potential of AI in orthopaedics is illustrated through examples involving disease- or injury-specific outcome prediction, medical image analysis, clinical decision support systems and digital twin technology. Furthermore, it is essential to address the role of human involvement in training unbiased, generalizable AI models, their explainability in high-risk clinical settings and the implementation of expert oversight and clinical safety measures for failure. In conclusion, the opportunities and challenges of AI in medicine are presented to ensure the safe and ethical deployment of AI models for orthopaedic research and clinical application. Level of evidence IV |
format | Online Article Text |
id | pubmed-10651597 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-106515972023-11-16 A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges Zsidai, Bálint Hilkert, Ann-Sophie Kaarre, Janina Narup, Eric Senorski, Eric Hamrin Grassi, Alberto Ley, Christophe Longo, Umile Giuseppe Herbst, Elmar Hirschmann, Michael T. Kopf, Sebastian Seil, Romain Tischer, Thomas Samuelsson, Kristian Feldt, Robert J Exp Orthop Review Paper Artificial intelligence (AI) has the potential to transform medical research by improving disease diagnosis, clinical decision-making, and outcome prediction. Despite the rapid adoption of AI and machine learning (ML) in other domains and industry, deployment in medical research and clinical practice poses several challenges due to the inherent characteristics and barriers of the healthcare sector. Therefore, researchers aiming to perform AI-intensive studies require a fundamental understanding of the key concepts, biases, and clinical safety concerns associated with the use of AI. Through the analysis of large, multimodal datasets, AI has the potential to revolutionize orthopaedic research, with new insights regarding the optimal diagnosis and management of patients affected musculoskeletal injury and disease. The article is the first in a series introducing fundamental concepts and best practices to guide healthcare professionals and researcher interested in performing AI-intensive orthopaedic research studies. The vast potential of AI in orthopaedics is illustrated through examples involving disease- or injury-specific outcome prediction, medical image analysis, clinical decision support systems and digital twin technology. Furthermore, it is essential to address the role of human involvement in training unbiased, generalizable AI models, their explainability in high-risk clinical settings and the implementation of expert oversight and clinical safety measures for failure. In conclusion, the opportunities and challenges of AI in medicine are presented to ensure the safe and ethical deployment of AI models for orthopaedic research and clinical application. Level of evidence IV Springer Berlin Heidelberg 2023-11-16 /pmc/articles/PMC10651597/ /pubmed/37968370 http://dx.doi.org/10.1186/s40634-023-00683-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Paper Zsidai, Bálint Hilkert, Ann-Sophie Kaarre, Janina Narup, Eric Senorski, Eric Hamrin Grassi, Alberto Ley, Christophe Longo, Umile Giuseppe Herbst, Elmar Hirschmann, Michael T. Kopf, Sebastian Seil, Romain Tischer, Thomas Samuelsson, Kristian Feldt, Robert A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges |
title | A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges |
title_full | A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges |
title_fullStr | A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges |
title_full_unstemmed | A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges |
title_short | A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges |
title_sort | practical guide to the implementation of ai in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges |
topic | Review Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651597/ https://www.ncbi.nlm.nih.gov/pubmed/37968370 http://dx.doi.org/10.1186/s40634-023-00683-z |
work_keys_str_mv | AT zsidaibalint apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT hilkertannsophie apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT kaarrejanina apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT naruperic apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT senorskierichamrin apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT grassialberto apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT leychristophe apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT longoumilegiuseppe apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT herbstelmar apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT hirschmannmichaelt apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT kopfsebastian apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT seilromain apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT tischerthomas apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT samuelssonkristian apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT feldtrobert apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT zsidaibalint practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT hilkertannsophie practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT kaarrejanina practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT naruperic practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT senorskierichamrin practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT grassialberto practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT leychristophe practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT longoumilegiuseppe practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT herbstelmar practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT hirschmannmichaelt practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT kopfsebastian practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT seilromain practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT tischerthomas practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT samuelssonkristian practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT feldtrobert practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges AT practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges |