Cargando…

A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges

Artificial intelligence (AI) has the potential to transform medical research by improving disease diagnosis, clinical decision-making, and outcome prediction. Despite the rapid adoption of AI and machine learning (ML) in other domains and industry, deployment in medical research and clinical practic...

Descripción completa

Detalles Bibliográficos
Autores principales: Zsidai, Bálint, Hilkert, Ann-Sophie, Kaarre, Janina, Narup, Eric, Senorski, Eric Hamrin, Grassi, Alberto, Ley, Christophe, Longo, Umile Giuseppe, Herbst, Elmar, Hirschmann, Michael T., Kopf, Sebastian, Seil, Romain, Tischer, Thomas, Samuelsson, Kristian, Feldt, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651597/
https://www.ncbi.nlm.nih.gov/pubmed/37968370
http://dx.doi.org/10.1186/s40634-023-00683-z
_version_ 1785147634096275456
author Zsidai, Bálint
Hilkert, Ann-Sophie
Kaarre, Janina
Narup, Eric
Senorski, Eric Hamrin
Grassi, Alberto
Ley, Christophe
Longo, Umile Giuseppe
Herbst, Elmar
Hirschmann, Michael T.
Kopf, Sebastian
Seil, Romain
Tischer, Thomas
Samuelsson, Kristian
Feldt, Robert
author_facet Zsidai, Bálint
Hilkert, Ann-Sophie
Kaarre, Janina
Narup, Eric
Senorski, Eric Hamrin
Grassi, Alberto
Ley, Christophe
Longo, Umile Giuseppe
Herbst, Elmar
Hirschmann, Michael T.
Kopf, Sebastian
Seil, Romain
Tischer, Thomas
Samuelsson, Kristian
Feldt, Robert
author_sort Zsidai, Bálint
collection PubMed
description Artificial intelligence (AI) has the potential to transform medical research by improving disease diagnosis, clinical decision-making, and outcome prediction. Despite the rapid adoption of AI and machine learning (ML) in other domains and industry, deployment in medical research and clinical practice poses several challenges due to the inherent characteristics and barriers of the healthcare sector. Therefore, researchers aiming to perform AI-intensive studies require a fundamental understanding of the key concepts, biases, and clinical safety concerns associated with the use of AI. Through the analysis of large, multimodal datasets, AI has the potential to revolutionize orthopaedic research, with new insights regarding the optimal diagnosis and management of patients affected musculoskeletal injury and disease. The article is the first in a series introducing fundamental concepts and best practices to guide healthcare professionals and researcher interested in performing AI-intensive orthopaedic research studies. The vast potential of AI in orthopaedics is illustrated through examples involving disease- or injury-specific outcome prediction, medical image analysis, clinical decision support systems and digital twin technology. Furthermore, it is essential to address the role of human involvement in training unbiased, generalizable AI models, their explainability in high-risk clinical settings and the implementation of expert oversight and clinical safety measures for failure. In conclusion, the opportunities and challenges of AI in medicine are presented to ensure the safe and ethical deployment of AI models for orthopaedic research and clinical application. Level of evidence IV
format Online
Article
Text
id pubmed-10651597
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-106515972023-11-16 A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges Zsidai, Bálint Hilkert, Ann-Sophie Kaarre, Janina Narup, Eric Senorski, Eric Hamrin Grassi, Alberto Ley, Christophe Longo, Umile Giuseppe Herbst, Elmar Hirschmann, Michael T. Kopf, Sebastian Seil, Romain Tischer, Thomas Samuelsson, Kristian Feldt, Robert J Exp Orthop Review Paper Artificial intelligence (AI) has the potential to transform medical research by improving disease diagnosis, clinical decision-making, and outcome prediction. Despite the rapid adoption of AI and machine learning (ML) in other domains and industry, deployment in medical research and clinical practice poses several challenges due to the inherent characteristics and barriers of the healthcare sector. Therefore, researchers aiming to perform AI-intensive studies require a fundamental understanding of the key concepts, biases, and clinical safety concerns associated with the use of AI. Through the analysis of large, multimodal datasets, AI has the potential to revolutionize orthopaedic research, with new insights regarding the optimal diagnosis and management of patients affected musculoskeletal injury and disease. The article is the first in a series introducing fundamental concepts and best practices to guide healthcare professionals and researcher interested in performing AI-intensive orthopaedic research studies. The vast potential of AI in orthopaedics is illustrated through examples involving disease- or injury-specific outcome prediction, medical image analysis, clinical decision support systems and digital twin technology. Furthermore, it is essential to address the role of human involvement in training unbiased, generalizable AI models, their explainability in high-risk clinical settings and the implementation of expert oversight and clinical safety measures for failure. In conclusion, the opportunities and challenges of AI in medicine are presented to ensure the safe and ethical deployment of AI models for orthopaedic research and clinical application. Level of evidence IV Springer Berlin Heidelberg 2023-11-16 /pmc/articles/PMC10651597/ /pubmed/37968370 http://dx.doi.org/10.1186/s40634-023-00683-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Review Paper
Zsidai, Bálint
Hilkert, Ann-Sophie
Kaarre, Janina
Narup, Eric
Senorski, Eric Hamrin
Grassi, Alberto
Ley, Christophe
Longo, Umile Giuseppe
Herbst, Elmar
Hirschmann, Michael T.
Kopf, Sebastian
Seil, Romain
Tischer, Thomas
Samuelsson, Kristian
Feldt, Robert
A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges
title A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges
title_full A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges
title_fullStr A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges
title_full_unstemmed A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges
title_short A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges
title_sort practical guide to the implementation of ai in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges
topic Review Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651597/
https://www.ncbi.nlm.nih.gov/pubmed/37968370
http://dx.doi.org/10.1186/s40634-023-00683-z
work_keys_str_mv AT zsidaibalint apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT hilkertannsophie apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT kaarrejanina apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT naruperic apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT senorskierichamrin apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT grassialberto apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT leychristophe apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT longoumilegiuseppe apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT herbstelmar apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT hirschmannmichaelt apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT kopfsebastian apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT seilromain apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT tischerthomas apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT samuelssonkristian apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT feldtrobert apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT apracticalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT zsidaibalint practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT hilkertannsophie practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT kaarrejanina practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT naruperic practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT senorskierichamrin practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT grassialberto practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT leychristophe practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT longoumilegiuseppe practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT herbstelmar practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT hirschmannmichaelt practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT kopfsebastian practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT seilromain practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT tischerthomas practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT samuelssonkristian practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT feldtrobert practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges
AT practicalguidetotheimplementationofaiinorthopaedicresearchpart1opportunitiesinclinicalapplicationandovercomingexistingchallenges