Cargando…

Plasma metabolomic signatures of dual decline in memory and gait in older adults

Older adults experiencing dual decline in memory and gait have greater dementia risk than those with memory or gait decline only, but mechanisms are unknown. Dual decline may indicate specific pathophysiological pathways to dementia which can be reflected by circulating metabolites. We compared long...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Qu, Shardell, Michelle D., Kuo, Pei-Lun, Tanaka, Toshiko, Simonsick, Eleanor M., Moaddel, Ruin, Resnick, Susan M., Ferrucci, Luigi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651620/
https://www.ncbi.nlm.nih.gov/pubmed/37052768
http://dx.doi.org/10.1007/s11357-023-00792-8
Descripción
Sumario:Older adults experiencing dual decline in memory and gait have greater dementia risk than those with memory or gait decline only, but mechanisms are unknown. Dual decline may indicate specific pathophysiological pathways to dementia which can be reflected by circulating metabolites. We compared longitudinal changes in plasma metabolite biomarkers of older adults with and without dual decline in the Baltimore Longitudinal Study of Aging (BLSA). Participants were grouped into 4 phenotypes based on annual rates of decline in verbal memory and gait speed: no decline in memory or gait, memory decline only, gait decline only, and dual decline. Repeated measures of plasma metabolomics were measured by biocrates p500 kit during the same time of memory and gait assessments. In BLSA, 18 metabolites differed across groups (q-value < 0.05). Metabolites differentially abundant were enriched for lysophosphatidylcholines (lysoPC C18:0,C16:0,C17:0,C18:1,C18:2), ceramides (d18:2/24:0,d16:1/24:0,d16:1/23:0), and amino acids (glycine) classes. Compared to no decline, the dual decline group showed greater declines in lysoPC C18:0, homoarginine synthesis, and the metabolite module containing mostly triglycerides, and showed a greater increase in indoleamine 2,3-dioxygenase (IDO) activity. Metabolites distinguishing dual decline and no decline groups were implicated in metabolic pathways of the aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine biosynthesis, histidine metabolism, and sphingolipid metabolism. Older adults with dual decline exhibit the most extensive alterations in metabolic profiling of lysoPCs, ceramides, IDO activity, and homoarginine synthesis. Alterations in these metabolites may indicate mitochondrial dysfunction, compromised immunity, and elevated burden of cardiovascular and kidney pathology. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11357-023-00792-8.