Cargando…
On effectively predicting autism spectrum disorder therapy using an ensemble of classifiers
An ensemble of classifiers combines several single classifiers to deliver a final prediction or classification decision. An increasingly provoking question is whether such an ensemble can outperform the single best classifier. If so, what form of ensemble learning system (also known as multiple clas...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651853/ https://www.ncbi.nlm.nih.gov/pubmed/37968315 http://dx.doi.org/10.1038/s41598-023-46379-3 |
Sumario: | An ensemble of classifiers combines several single classifiers to deliver a final prediction or classification decision. An increasingly provoking question is whether such an ensemble can outperform the single best classifier. If so, what form of ensemble learning system (also known as multiple classifier learning systems) yields the most significant benefits in the size or diversity of the ensemble? In this paper, the ability of ensemble learning to predict and identify factors that influence or contribute to autism spectrum disorder therapy (ASDT) for intervention purposes is investigated. Given that most interventions are typically short-term in nature, henceforth, developing a robotic system that will provide the best outcome and measurement of ASDT therapy has never been so critical. In this paper, the performance of five single classifiers against several multiple classifier learning systems in exploring and predicting ASDT is investigated using a dataset of behavioural data and robot-enhanced therapy against standard human treatment based on 3000 sessions and 300 h, recorded from 61 autistic children. Experimental results show statistically significant differences in performance among the single classifiers for ASDT prediction with decision trees as the more accurate classifier. The results further show multiple classifier learning systems (MCLS) achieving better performance for ASDT prediction (especially those ensembles with three core classifiers). Additionally, the results show bagging and boosting ensemble learning as robust when predicting ASDT with multi-stage design as the most dominant architecture. It also appears that eye contact and social interaction are the most critical contributing factors to the ASDT problem among children. |
---|