Cargando…

Genomic identification and expression profiling of WRKY genes in alfalfa (Medicago sativa) elucidate their responsiveness to seed vigor

BACKGROUND: Seed aging is a critical factor contributing to vigor loss, leading to delayed forage seed germination and seedling growth. Numerous studies have revealed the regulatory role of WRKY transcription factors in seed development, germination, and seed vigor. However, a comprehensive genome-w...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Shoujiang, Ma, Wen, Mao, Peisheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652462/
https://www.ncbi.nlm.nih.gov/pubmed/37968658
http://dx.doi.org/10.1186/s12870-023-04597-x
Descripción
Sumario:BACKGROUND: Seed aging is a critical factor contributing to vigor loss, leading to delayed forage seed germination and seedling growth. Numerous studies have revealed the regulatory role of WRKY transcription factors in seed development, germination, and seed vigor. However, a comprehensive genome-wide analysis of WRKY genes in Zhongmu No.1 alfalfa has not yet been conducted. RESULTS: In this study, a total of 91 MsWRKY genes were identified from the genome of alfalfa. Phylogenetic analysis revealed that these MsWRKY genes could be categorized into seven distinct subgroups. Furthermore, 88 MsWRKY genes were unevenly mapped on eight chromosomes in alfalfa. Gene duplication analysis revealed segmental duplication as the principal driving force for the expansion of this gene family during the course of evolution. Expression analysis of the 91 MsWRKY genes across various tissues and during seed germination exhibited differential expression patterns. Subsequent RT-qPCR analysis highlighted significant induction of nine selected MsWRKY genes in response to seed aging treatment, suggesting their potential roles in regulating seed vigor. CONCLUSION: This study investigated WRKY genes in alfalfa and identified nine candidate WRKY transcription factors involved in the regulation of seed vigor. While this finding provides valuable insights into understanding the molecular mechanisms underlying vigor loss and developing new strategies to enhance alfalfa seed germinability, further research is required to comprehensively elucidate the precise pathways through which the MsWRKY genes modulate seed vigor. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-023-04597-x.