Cargando…

Phytochemical analysis and anti-infective potential of fungal endophytes isolated from Nigella sativa seeds

Endophytic fungi, particularly from higher plants have proven to be a rich source of antimicrobial secondary metabolites. The purpose of this study is to examine the antimicrobial potential of three endophytic fungi Aspergillus sp. SA1, Aspergillus sp. SA2, and Aspergillus sp. SA3, cultivated from N...

Descripción completa

Detalles Bibliográficos
Autores principales: Shady, Nourhan Hisham, Sobhy, Sara Khalid, Mostafa, Yaser A., Yahia, Ramadan, Glaeser, Stefanie P., Kämpfer, Peter, El-Katatny, Mo’men H., Abdelmohsen, Usama Ramadan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652552/
https://www.ncbi.nlm.nih.gov/pubmed/37974074
http://dx.doi.org/10.1186/s12866-023-03085-4
Descripción
Sumario:Endophytic fungi, particularly from higher plants have proven to be a rich source of antimicrobial secondary metabolites. The purpose of this study is to examine the antimicrobial potential of three endophytic fungi Aspergillus sp. SA1, Aspergillus sp. SA2, and Aspergillus sp. SA3, cultivated from Nigella sativa seeds against Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Klebsiella pneumoniae (ATCC 13883), MRSA (ATCC 33591), and human pathogen Candida albicans (ATCC 10231). Furthermore, the most active cultivated endophytic fungi were molecularly identified via internal transcribed spacer (ITS) sequencing. HR-ESIMS guided approach has been used successfully in chemical profiling of 26 known bioactive secondary metabolites (1–26), which belongs to different classes of natural compounds such as polyketides, benzenoids, quinones, alcohols, phenols or alkaloids. Finally, in-silico interactions within active site of fungal Cyp51 and bacterial DNA gyrase revealed possibility of being a hit-target for such metabolites as antimicrobials.