Cargando…
DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping
BACKGROUND AND OBJECTIVE: The classification of glioma subtypes is essential for precision therapy. Due to the heterogeneity of gliomas, the subtype-specific molecular pattern can be captured by integrating and analyzing high-throughput omics data from different genomic layers. The development of a...
Autores principales: | Munquad, Sana, Das, Asim Bikas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652591/ https://www.ncbi.nlm.nih.gov/pubmed/37968655 http://dx.doi.org/10.1186/s13040-023-00349-7 |
Ejemplares similares
-
A Deep Learning–Based Framework for Supporting Clinical Diagnosis of Glioblastoma Subtypes
por: Munquad, Sana, et al.
Publicado: (2022) -
Road-Type Classification with Deep AutoEncoder
por: Molefe, Mohale E., et al.
Publicado: (2023) -
Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data
por: Franco, Edian F., et al.
Publicado: (2021) -
AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders
por: Sajadi, Seyedeh Zahra, et al.
Publicado: (2021) -
Noninvasive Classification of Glioma Subtypes Using Multiparametric MRI to Improve Deep Learning
por: Xiong, Diaohan, et al.
Publicado: (2022)