Cargando…
Prior Adaptive Semi-supervised Learning with Application to EHR Phenotyping
Electronic Health Record (EHR) data, a rich source for biomedical research, have been successfully used to gain novel insight into a wide range of diseases. Despite its potential, EHR is currently underutilized for discovery research due to its major limitation in the lack of precise phenotype infor...
Autores principales: | Zhang, Yichi, Liu, Molei, Neykov, Matey, Cai, Tianxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653017/ https://www.ncbi.nlm.nih.gov/pubmed/37974910 |
Ejemplares similares
-
A semi-supervised adaptive Markov Gaussian embedding process (SAMGEP) for prediction of phenotype event times using the electronic health record
por: Ahuja, Yuri, et al.
Publicado: (2022) -
Semi-supervised learning /
Publicado: (2010) -
Robust identification of molecular phenotypes using semi-supervised learning
por: Roder, Heinrich, et al.
Publicado: (2019) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
A semi-supervised approach for rapidly creating clinical biomarker phenotypes in the UK Biobank using different primary care EHR and clinical terminology systems
por: Denaxas, Spiros, et al.
Publicado: (2020)