Cargando…
Spatially explicit accuracy assessment of deep learning-based, fine-resolution built-up land data in the United States
Geospatial datasets derived from remote sensing data by means of machine learning methods are often based on probabilistic outputs of abstract nature, which are difficult to translate into interpretable measures. For example, the Global Human Settlement Layer GHS-BUILT-S2 product reports the probabi...
Autores principales: | Uhl, Johannes H., Leyk, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653213/ https://www.ncbi.nlm.nih.gov/pubmed/37975073 http://dx.doi.org/10.1016/j.jag.2023.103469 |
Ejemplares similares
-
Fine-grained, spatiotemporal datasets measuring 200 years of land development in the United States
por: Uhl, Johannes H., et al.
Publicado: (2021) -
Gridded land use data for the conterminous United States 1940–2015
por: Mc Shane, Caitlín, et al.
Publicado: (2022) -
Author Correction: Gridded land use data for the conterminous United States 1940–2015
por: Mc Shane, Caitlín, et al.
Publicado: (2022) -
HISDAC-US, historical settlement data compilation for the conterminous United States over 200 years
por: Leyk, Stefan, et al.
Publicado: (2018) -
MTBF-33: A multi-temporal building footprint dataset for 33 counties in the United States (1900 – 2015)
por: Uhl, Johannes H., et al.
Publicado: (2022)