Cargando…
Assessing the Use of German Claims Data Vocabularies for Research in the Observational Medical Outcomes Partnership Common Data Model: Development and Evaluation Study
BACKGROUND: National classifications and terminologies already routinely used for documentation within patient care settings enable the unambiguous representation of clinical information. However, the diversity of different vocabularies across health care institutions and countries is a barrier to a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications Inc
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653283/ https://www.ncbi.nlm.nih.gov/pubmed/37942786 http://dx.doi.org/10.2196/47959 |
_version_ | 1785136378272546816 |
---|---|
author | Henke, Elisa Zoch, Michéle Kallfelz, Michael Ruhnke, Thomas Leutner, Liz Annika Spoden, Melissa Günster, Christian Sedlmayr, Martin Bathelt, Franziska |
author_facet | Henke, Elisa Zoch, Michéle Kallfelz, Michael Ruhnke, Thomas Leutner, Liz Annika Spoden, Melissa Günster, Christian Sedlmayr, Martin Bathelt, Franziska |
author_sort | Henke, Elisa |
collection | PubMed |
description | BACKGROUND: National classifications and terminologies already routinely used for documentation within patient care settings enable the unambiguous representation of clinical information. However, the diversity of different vocabularies across health care institutions and countries is a barrier to achieving semantic interoperability and exchanging data across sites. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) enables the standardization of structure and medical terminology. It allows the mapping of national vocabularies into so-called standard concepts, representing normative expressions for international analyses and research. Within our project “Hybrid Quality Indicators Using Machine Learning Methods” (Hybrid-QI), we aim to harmonize source codes used in German claims data vocabularies that are currently unavailable in the OMOP CDM. OBJECTIVE: This study aims to increase the coverage of German vocabularies in the OMOP CDM. We aim to completely transform the source codes used in German claims data into the OMOP CDM without data loss and make German claims data usable for OMOP CDM–based research. METHODS: To prepare the missing German vocabularies for the OMOP CDM, we defined a vocabulary preparation approach consisting of the identification of all codes of the corresponding vocabularies, their assembly into machine-readable tables, and the translation of German designations into English. Furthermore, we used 2 proposed approaches for OMOP-compliant vocabulary preparation: the mapping to standard concepts using the Observational Health Data Sciences and Informatics (OHDSI) tool Usagi and the preparation of new 2-billion concepts (ie, concept_id >2 billion). Finally, we evaluated the prepared vocabularies regarding completeness and correctness using synthetic German claims data and calculated the coverage of German claims data vocabularies in the OMOP CDM. RESULTS: Our vocabulary preparation approach was able to map 3 missing German vocabularies to standard concepts and prepare 8 vocabularies as new 2-billion concepts. The completeness evaluation showed that the prepared vocabularies cover 44.3% (3288/7417) of the source codes contained in German claims data. The correctness evaluation revealed that the specified validity periods in the OMOP CDM are compliant for the majority (705,531/706,032, 99.9%) of source codes and associated dates in German claims data. The calculation of the vocabulary coverage showed a noticeable decrease of missing vocabularies from 55% (11/20) to 10% (2/20) due to our preparation approach. CONCLUSIONS: By preparing 10 vocabularies, we showed that our approach is applicable to any type of vocabulary used in a source data set. The prepared vocabularies are currently limited to German vocabularies, which can only be used in national OMOP CDM research projects, because the mapping of new 2-billion concepts to standard concepts is missing. To participate in international OHDSI network studies with German claims data, future work is required to map the prepared 2-billion concepts to standard concepts. |
format | Online Article Text |
id | pubmed-10653283 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | JMIR Publications Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-106532832023-11-07 Assessing the Use of German Claims Data Vocabularies for Research in the Observational Medical Outcomes Partnership Common Data Model: Development and Evaluation Study Henke, Elisa Zoch, Michéle Kallfelz, Michael Ruhnke, Thomas Leutner, Liz Annika Spoden, Melissa Günster, Christian Sedlmayr, Martin Bathelt, Franziska JMIR Med Inform Original Paper BACKGROUND: National classifications and terminologies already routinely used for documentation within patient care settings enable the unambiguous representation of clinical information. However, the diversity of different vocabularies across health care institutions and countries is a barrier to achieving semantic interoperability and exchanging data across sites. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) enables the standardization of structure and medical terminology. It allows the mapping of national vocabularies into so-called standard concepts, representing normative expressions for international analyses and research. Within our project “Hybrid Quality Indicators Using Machine Learning Methods” (Hybrid-QI), we aim to harmonize source codes used in German claims data vocabularies that are currently unavailable in the OMOP CDM. OBJECTIVE: This study aims to increase the coverage of German vocabularies in the OMOP CDM. We aim to completely transform the source codes used in German claims data into the OMOP CDM without data loss and make German claims data usable for OMOP CDM–based research. METHODS: To prepare the missing German vocabularies for the OMOP CDM, we defined a vocabulary preparation approach consisting of the identification of all codes of the corresponding vocabularies, their assembly into machine-readable tables, and the translation of German designations into English. Furthermore, we used 2 proposed approaches for OMOP-compliant vocabulary preparation: the mapping to standard concepts using the Observational Health Data Sciences and Informatics (OHDSI) tool Usagi and the preparation of new 2-billion concepts (ie, concept_id >2 billion). Finally, we evaluated the prepared vocabularies regarding completeness and correctness using synthetic German claims data and calculated the coverage of German claims data vocabularies in the OMOP CDM. RESULTS: Our vocabulary preparation approach was able to map 3 missing German vocabularies to standard concepts and prepare 8 vocabularies as new 2-billion concepts. The completeness evaluation showed that the prepared vocabularies cover 44.3% (3288/7417) of the source codes contained in German claims data. The correctness evaluation revealed that the specified validity periods in the OMOP CDM are compliant for the majority (705,531/706,032, 99.9%) of source codes and associated dates in German claims data. The calculation of the vocabulary coverage showed a noticeable decrease of missing vocabularies from 55% (11/20) to 10% (2/20) due to our preparation approach. CONCLUSIONS: By preparing 10 vocabularies, we showed that our approach is applicable to any type of vocabulary used in a source data set. The prepared vocabularies are currently limited to German vocabularies, which can only be used in national OMOP CDM research projects, because the mapping of new 2-billion concepts to standard concepts is missing. To participate in international OHDSI network studies with German claims data, future work is required to map the prepared 2-billion concepts to standard concepts. JMIR Publications Inc 2023-11-07 /pmc/articles/PMC10653283/ /pubmed/37942786 http://dx.doi.org/10.2196/47959 Text en © Elisa Henke, Michéle Zoch, Michael Kallfelz, Thomas Ruhnke, Liz Annika Leutner, Melissa Spoden, Christian Günster, Martin Sedlmayr, Franziska Bathelt. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 7.11.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Henke, Elisa Zoch, Michéle Kallfelz, Michael Ruhnke, Thomas Leutner, Liz Annika Spoden, Melissa Günster, Christian Sedlmayr, Martin Bathelt, Franziska Assessing the Use of German Claims Data Vocabularies for Research in the Observational Medical Outcomes Partnership Common Data Model: Development and Evaluation Study |
title | Assessing the Use of German Claims Data Vocabularies for Research in the Observational Medical Outcomes Partnership Common Data Model: Development and Evaluation Study |
title_full | Assessing the Use of German Claims Data Vocabularies for Research in the Observational Medical Outcomes Partnership Common Data Model: Development and Evaluation Study |
title_fullStr | Assessing the Use of German Claims Data Vocabularies for Research in the Observational Medical Outcomes Partnership Common Data Model: Development and Evaluation Study |
title_full_unstemmed | Assessing the Use of German Claims Data Vocabularies for Research in the Observational Medical Outcomes Partnership Common Data Model: Development and Evaluation Study |
title_short | Assessing the Use of German Claims Data Vocabularies for Research in the Observational Medical Outcomes Partnership Common Data Model: Development and Evaluation Study |
title_sort | assessing the use of german claims data vocabularies for research in the observational medical outcomes partnership common data model: development and evaluation study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653283/ https://www.ncbi.nlm.nih.gov/pubmed/37942786 http://dx.doi.org/10.2196/47959 |
work_keys_str_mv | AT henkeelisa assessingtheuseofgermanclaimsdatavocabulariesforresearchintheobservationalmedicaloutcomespartnershipcommondatamodeldevelopmentandevaluationstudy AT zochmichele assessingtheuseofgermanclaimsdatavocabulariesforresearchintheobservationalmedicaloutcomespartnershipcommondatamodeldevelopmentandevaluationstudy AT kallfelzmichael assessingtheuseofgermanclaimsdatavocabulariesforresearchintheobservationalmedicaloutcomespartnershipcommondatamodeldevelopmentandevaluationstudy AT ruhnkethomas assessingtheuseofgermanclaimsdatavocabulariesforresearchintheobservationalmedicaloutcomespartnershipcommondatamodeldevelopmentandevaluationstudy AT leutnerlizannika assessingtheuseofgermanclaimsdatavocabulariesforresearchintheobservationalmedicaloutcomespartnershipcommondatamodeldevelopmentandevaluationstudy AT spodenmelissa assessingtheuseofgermanclaimsdatavocabulariesforresearchintheobservationalmedicaloutcomespartnershipcommondatamodeldevelopmentandevaluationstudy AT gunsterchristian assessingtheuseofgermanclaimsdatavocabulariesforresearchintheobservationalmedicaloutcomespartnershipcommondatamodeldevelopmentandevaluationstudy AT sedlmayrmartin assessingtheuseofgermanclaimsdatavocabulariesforresearchintheobservationalmedicaloutcomespartnershipcommondatamodeldevelopmentandevaluationstudy AT batheltfranziska assessingtheuseofgermanclaimsdatavocabulariesforresearchintheobservationalmedicaloutcomespartnershipcommondatamodeldevelopmentandevaluationstudy |