Cargando…
Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired single-cell RNA sequenci...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653299/ https://www.ncbi.nlm.nih.gov/pubmed/37974651 http://dx.doi.org/10.1038/s43588-023-00476-5 |
_version_ | 1785147763340607488 |
---|---|
author | Chen, Xi Wang, Yuan Cappuccio, Antonio Cheng, Wan-Sze Zamojski, Frederique Ruf Nair, Venugopalan D. Miller, Clare M. Rubenstein, Aliza B. Nudelman, German Tadych, Alicja Theesfeld, Chandra L. Vornholt, Alexandria George, Mary-Catherine Ruffin, Felicia Dagher, Michael Chawla, Daniel G. Soares-Schanoski, Alessandra Spurbeck, Rachel R. Ndhlovu, Lishomwa C. Sebra, Robert Kleinstein, Steven H. Letizia, Andrew G. Ramos, Irene Fowler, Vance G. Woods, Christopher W. Zaslavsky, Elena Troyanskaya, Olga G. Sealfon, Stuart C. |
author_facet | Chen, Xi Wang, Yuan Cappuccio, Antonio Cheng, Wan-Sze Zamojski, Frederique Ruf Nair, Venugopalan D. Miller, Clare M. Rubenstein, Aliza B. Nudelman, German Tadych, Alicja Theesfeld, Chandra L. Vornholt, Alexandria George, Mary-Catherine Ruffin, Felicia Dagher, Michael Chawla, Daniel G. Soares-Schanoski, Alessandra Spurbeck, Rachel R. Ndhlovu, Lishomwa C. Sebra, Robert Kleinstein, Steven H. Letizia, Andrew G. Ramos, Irene Fowler, Vance G. Woods, Christopher W. Zaslavsky, Elena Troyanskaya, Olga G. Sealfon, Stuart C. |
author_sort | Chen, Xi |
collection | PubMed |
description | Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing from different conditions to map disease-associated transcription factors, chromatin sites, and genes as regulatory circuits. By simultaneously modeling signal variation across cells and conditions in both omics data types, MAGICAL achieved high accuracy on circuit inference. We applied MAGICAL to study Staphylococcus aureus sepsis from peripheral blood mononuclear single-cell data that we generated from subjects with bloodstream infection and uninfected controls. MAGICAL identified sepsis-associated regulatory circuits predominantly in CD14 monocytes, known to be activated by bacterial sepsis. We addressed the challenging problem of distinguishing host regulatory circuit responses to methicillin-resistant and methicillin-susceptible S. aureus infections. Although differential expression analysis failed to show predictive value, MAGICAL identified epigenetic circuit biomarkers that distinguished methicillin-resistant from methicillin-susceptible S. aureus infections. |
format | Online Article Text |
id | pubmed-10653299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-106532992023-11-16 Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data Chen, Xi Wang, Yuan Cappuccio, Antonio Cheng, Wan-Sze Zamojski, Frederique Ruf Nair, Venugopalan D. Miller, Clare M. Rubenstein, Aliza B. Nudelman, German Tadych, Alicja Theesfeld, Chandra L. Vornholt, Alexandria George, Mary-Catherine Ruffin, Felicia Dagher, Michael Chawla, Daniel G. Soares-Schanoski, Alessandra Spurbeck, Rachel R. Ndhlovu, Lishomwa C. Sebra, Robert Kleinstein, Steven H. Letizia, Andrew G. Ramos, Irene Fowler, Vance G. Woods, Christopher W. Zaslavsky, Elena Troyanskaya, Olga G. Sealfon, Stuart C. Nat Comput Sci Article Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing from different conditions to map disease-associated transcription factors, chromatin sites, and genes as regulatory circuits. By simultaneously modeling signal variation across cells and conditions in both omics data types, MAGICAL achieved high accuracy on circuit inference. We applied MAGICAL to study Staphylococcus aureus sepsis from peripheral blood mononuclear single-cell data that we generated from subjects with bloodstream infection and uninfected controls. MAGICAL identified sepsis-associated regulatory circuits predominantly in CD14 monocytes, known to be activated by bacterial sepsis. We addressed the challenging problem of distinguishing host regulatory circuit responses to methicillin-resistant and methicillin-susceptible S. aureus infections. Although differential expression analysis failed to show predictive value, MAGICAL identified epigenetic circuit biomarkers that distinguished methicillin-resistant from methicillin-susceptible S. aureus infections. 2023-07 2023-07-25 /pmc/articles/PMC10653299/ /pubmed/37974651 http://dx.doi.org/10.1038/s43588-023-00476-5 Text en https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . Reprints and permissions information is available at www.nature.com/reprints (https://www.nature.com/reprints) . |
spellingShingle | Article Chen, Xi Wang, Yuan Cappuccio, Antonio Cheng, Wan-Sze Zamojski, Frederique Ruf Nair, Venugopalan D. Miller, Clare M. Rubenstein, Aliza B. Nudelman, German Tadych, Alicja Theesfeld, Chandra L. Vornholt, Alexandria George, Mary-Catherine Ruffin, Felicia Dagher, Michael Chawla, Daniel G. Soares-Schanoski, Alessandra Spurbeck, Rachel R. Ndhlovu, Lishomwa C. Sebra, Robert Kleinstein, Steven H. Letizia, Andrew G. Ramos, Irene Fowler, Vance G. Woods, Christopher W. Zaslavsky, Elena Troyanskaya, Olga G. Sealfon, Stuart C. Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data |
title | Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data |
title_full | Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data |
title_fullStr | Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data |
title_full_unstemmed | Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data |
title_short | Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data |
title_sort | mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653299/ https://www.ncbi.nlm.nih.gov/pubmed/37974651 http://dx.doi.org/10.1038/s43588-023-00476-5 |
work_keys_str_mv | AT chenxi mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT wangyuan mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT cappuccioantonio mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT chengwansze mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT zamojskifrederiqueruf mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT nairvenugopaland mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT millerclarem mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT rubensteinalizab mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT nudelmangerman mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT tadychalicja mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT theesfeldchandral mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT vornholtalexandria mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT georgemarycatherine mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT ruffinfelicia mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT daghermichael mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT chawladanielg mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT soaresschanoskialessandra mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT spurbeckrachelr mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT ndhlovulishomwac mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT sebrarobert mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT kleinsteinstevenh mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT letiziaandrewg mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT ramosirene mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT fowlervanceg mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT woodschristopherw mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT zaslavskyelena mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT troyanskayaolgag mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata AT sealfonstuartc mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata |