Cargando…

Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data

Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired single-cell RNA sequenci...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xi, Wang, Yuan, Cappuccio, Antonio, Cheng, Wan-Sze, Zamojski, Frederique Ruf, Nair, Venugopalan D., Miller, Clare M., Rubenstein, Aliza B., Nudelman, German, Tadych, Alicja, Theesfeld, Chandra L., Vornholt, Alexandria, George, Mary-Catherine, Ruffin, Felicia, Dagher, Michael, Chawla, Daniel G., Soares-Schanoski, Alessandra, Spurbeck, Rachel R., Ndhlovu, Lishomwa C., Sebra, Robert, Kleinstein, Steven H., Letizia, Andrew G., Ramos, Irene, Fowler, Vance G., Woods, Christopher W., Zaslavsky, Elena, Troyanskaya, Olga G., Sealfon, Stuart C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653299/
https://www.ncbi.nlm.nih.gov/pubmed/37974651
http://dx.doi.org/10.1038/s43588-023-00476-5
_version_ 1785147763340607488
author Chen, Xi
Wang, Yuan
Cappuccio, Antonio
Cheng, Wan-Sze
Zamojski, Frederique Ruf
Nair, Venugopalan D.
Miller, Clare M.
Rubenstein, Aliza B.
Nudelman, German
Tadych, Alicja
Theesfeld, Chandra L.
Vornholt, Alexandria
George, Mary-Catherine
Ruffin, Felicia
Dagher, Michael
Chawla, Daniel G.
Soares-Schanoski, Alessandra
Spurbeck, Rachel R.
Ndhlovu, Lishomwa C.
Sebra, Robert
Kleinstein, Steven H.
Letizia, Andrew G.
Ramos, Irene
Fowler, Vance G.
Woods, Christopher W.
Zaslavsky, Elena
Troyanskaya, Olga G.
Sealfon, Stuart C.
author_facet Chen, Xi
Wang, Yuan
Cappuccio, Antonio
Cheng, Wan-Sze
Zamojski, Frederique Ruf
Nair, Venugopalan D.
Miller, Clare M.
Rubenstein, Aliza B.
Nudelman, German
Tadych, Alicja
Theesfeld, Chandra L.
Vornholt, Alexandria
George, Mary-Catherine
Ruffin, Felicia
Dagher, Michael
Chawla, Daniel G.
Soares-Schanoski, Alessandra
Spurbeck, Rachel R.
Ndhlovu, Lishomwa C.
Sebra, Robert
Kleinstein, Steven H.
Letizia, Andrew G.
Ramos, Irene
Fowler, Vance G.
Woods, Christopher W.
Zaslavsky, Elena
Troyanskaya, Olga G.
Sealfon, Stuart C.
author_sort Chen, Xi
collection PubMed
description Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing from different conditions to map disease-associated transcription factors, chromatin sites, and genes as regulatory circuits. By simultaneously modeling signal variation across cells and conditions in both omics data types, MAGICAL achieved high accuracy on circuit inference. We applied MAGICAL to study Staphylococcus aureus sepsis from peripheral blood mononuclear single-cell data that we generated from subjects with bloodstream infection and uninfected controls. MAGICAL identified sepsis-associated regulatory circuits predominantly in CD14 monocytes, known to be activated by bacterial sepsis. We addressed the challenging problem of distinguishing host regulatory circuit responses to methicillin-resistant and methicillin-susceptible S. aureus infections. Although differential expression analysis failed to show predictive value, MAGICAL identified epigenetic circuit biomarkers that distinguished methicillin-resistant from methicillin-susceptible S. aureus infections.
format Online
Article
Text
id pubmed-10653299
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-106532992023-11-16 Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data Chen, Xi Wang, Yuan Cappuccio, Antonio Cheng, Wan-Sze Zamojski, Frederique Ruf Nair, Venugopalan D. Miller, Clare M. Rubenstein, Aliza B. Nudelman, German Tadych, Alicja Theesfeld, Chandra L. Vornholt, Alexandria George, Mary-Catherine Ruffin, Felicia Dagher, Michael Chawla, Daniel G. Soares-Schanoski, Alessandra Spurbeck, Rachel R. Ndhlovu, Lishomwa C. Sebra, Robert Kleinstein, Steven H. Letizia, Andrew G. Ramos, Irene Fowler, Vance G. Woods, Christopher W. Zaslavsky, Elena Troyanskaya, Olga G. Sealfon, Stuart C. Nat Comput Sci Article Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing from different conditions to map disease-associated transcription factors, chromatin sites, and genes as regulatory circuits. By simultaneously modeling signal variation across cells and conditions in both omics data types, MAGICAL achieved high accuracy on circuit inference. We applied MAGICAL to study Staphylococcus aureus sepsis from peripheral blood mononuclear single-cell data that we generated from subjects with bloodstream infection and uninfected controls. MAGICAL identified sepsis-associated regulatory circuits predominantly in CD14 monocytes, known to be activated by bacterial sepsis. We addressed the challenging problem of distinguishing host regulatory circuit responses to methicillin-resistant and methicillin-susceptible S. aureus infections. Although differential expression analysis failed to show predictive value, MAGICAL identified epigenetic circuit biomarkers that distinguished methicillin-resistant from methicillin-susceptible S. aureus infections. 2023-07 2023-07-25 /pmc/articles/PMC10653299/ /pubmed/37974651 http://dx.doi.org/10.1038/s43588-023-00476-5 Text en https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . Reprints and permissions information is available at www.nature.com/reprints (https://www.nature.com/reprints) .
spellingShingle Article
Chen, Xi
Wang, Yuan
Cappuccio, Antonio
Cheng, Wan-Sze
Zamojski, Frederique Ruf
Nair, Venugopalan D.
Miller, Clare M.
Rubenstein, Aliza B.
Nudelman, German
Tadych, Alicja
Theesfeld, Chandra L.
Vornholt, Alexandria
George, Mary-Catherine
Ruffin, Felicia
Dagher, Michael
Chawla, Daniel G.
Soares-Schanoski, Alessandra
Spurbeck, Rachel R.
Ndhlovu, Lishomwa C.
Sebra, Robert
Kleinstein, Steven H.
Letizia, Andrew G.
Ramos, Irene
Fowler, Vance G.
Woods, Christopher W.
Zaslavsky, Elena
Troyanskaya, Olga G.
Sealfon, Stuart C.
Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
title Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
title_full Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
title_fullStr Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
title_full_unstemmed Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
title_short Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
title_sort mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653299/
https://www.ncbi.nlm.nih.gov/pubmed/37974651
http://dx.doi.org/10.1038/s43588-023-00476-5
work_keys_str_mv AT chenxi mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT wangyuan mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT cappuccioantonio mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT chengwansze mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT zamojskifrederiqueruf mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT nairvenugopaland mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT millerclarem mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT rubensteinalizab mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT nudelmangerman mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT tadychalicja mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT theesfeldchandral mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT vornholtalexandria mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT georgemarycatherine mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT ruffinfelicia mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT daghermichael mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT chawladanielg mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT soaresschanoskialessandra mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT spurbeckrachelr mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT ndhlovulishomwac mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT sebrarobert mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT kleinsteinstevenh mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT letiziaandrewg mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT ramosirene mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT fowlervanceg mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT woodschristopherw mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT zaslavskyelena mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT troyanskayaolgag mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata
AT sealfonstuartc mappingdiseaseregulatorycircuitsatcelltyperesolutionfromsinglecellmultiomicsdata