Cargando…
Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state
Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance an...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653379/ https://www.ncbi.nlm.nih.gov/pubmed/37730435 http://dx.doi.org/10.1261/rna.079625.123 |
_version_ | 1785147765648523264 |
---|---|
author | Ciganda, Martin Sotelo-Silveira, José Dubey, Ashutosh P. Pandey, Parul Smith, Joseph T. Shen, Shichen Qu, Jun Smircich, Pablo Read, Laurie K. |
author_facet | Ciganda, Martin Sotelo-Silveira, José Dubey, Ashutosh P. Pandey, Parul Smith, Joseph T. Shen, Shichen Qu, Jun Smircich, Pablo Read, Laurie K. |
author_sort | Ciganda, Martin |
collection | PubMed |
description | Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. In kinetoplastid protozoa, including T. brucei, posttranscriptional control mechanisms are the primary means of gene regulation, and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that reportedly interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We validate the DRBD18 interaction with translating ribosomes and the translation initiation factor, eIF3a. We further show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, that is, changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. In DRBD18-depleted cells, a set of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. RNA immunoprecipitation/qRT-PCR indicates that DRBD18 associates with members of both repressed and enhanced cohorts. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs. |
format | Online Article Text |
id | pubmed-10653379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-106533792023-12-01 Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state Ciganda, Martin Sotelo-Silveira, José Dubey, Ashutosh P. Pandey, Parul Smith, Joseph T. Shen, Shichen Qu, Jun Smircich, Pablo Read, Laurie K. RNA Articles Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. In kinetoplastid protozoa, including T. brucei, posttranscriptional control mechanisms are the primary means of gene regulation, and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that reportedly interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We validate the DRBD18 interaction with translating ribosomes and the translation initiation factor, eIF3a. We further show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, that is, changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. In DRBD18-depleted cells, a set of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. RNA immunoprecipitation/qRT-PCR indicates that DRBD18 associates with members of both repressed and enhanced cohorts. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs. Cold Spring Harbor Laboratory Press 2023-12 /pmc/articles/PMC10653379/ /pubmed/37730435 http://dx.doi.org/10.1261/rna.079625.123 Text en © 2023 Ciganda et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society https://creativecommons.org/licenses/by-nc/4.0/This article, published in RNA, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) . |
spellingShingle | Articles Ciganda, Martin Sotelo-Silveira, José Dubey, Ashutosh P. Pandey, Parul Smith, Joseph T. Shen, Shichen Qu, Jun Smircich, Pablo Read, Laurie K. Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state |
title | Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state |
title_full | Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state |
title_fullStr | Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state |
title_full_unstemmed | Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state |
title_short | Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state |
title_sort | translational control by trypanosoma brucei drbd18 contributes to the maintenance of the procyclic state |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653379/ https://www.ncbi.nlm.nih.gov/pubmed/37730435 http://dx.doi.org/10.1261/rna.079625.123 |
work_keys_str_mv | AT cigandamartin translationalcontrolbytrypanosomabruceidrbd18contributestothemaintenanceoftheprocyclicstate AT sotelosilveirajose translationalcontrolbytrypanosomabruceidrbd18contributestothemaintenanceoftheprocyclicstate AT dubeyashutoshp translationalcontrolbytrypanosomabruceidrbd18contributestothemaintenanceoftheprocyclicstate AT pandeyparul translationalcontrolbytrypanosomabruceidrbd18contributestothemaintenanceoftheprocyclicstate AT smithjosepht translationalcontrolbytrypanosomabruceidrbd18contributestothemaintenanceoftheprocyclicstate AT shenshichen translationalcontrolbytrypanosomabruceidrbd18contributestothemaintenanceoftheprocyclicstate AT qujun translationalcontrolbytrypanosomabruceidrbd18contributestothemaintenanceoftheprocyclicstate AT smircichpablo translationalcontrolbytrypanosomabruceidrbd18contributestothemaintenanceoftheprocyclicstate AT readlauriek translationalcontrolbytrypanosomabruceidrbd18contributestothemaintenanceoftheprocyclicstate |