Cargando…

Understanding the implications of under-reporting, vaccine efficiency and social behavior on the post-pandemic spread using physics informed neural networks: A case study of China

In late 2019, the emergence of COVID-19 in Wuhan, China, led to the implementation of stringent measures forming the zero-COVID policy aimed at eliminating transmission. Zero-COVID policy basically aimed at completely eliminating the transmission of COVID-19. However, the relaxation of this policy i...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghosh, Samiran, Ogueda-Oliva, Alonso, Ghosh, Aditi, Banerjee, Malay, Seshaiyer, Padmanabhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653536/
https://www.ncbi.nlm.nih.gov/pubmed/37972077
http://dx.doi.org/10.1371/journal.pone.0290368
Descripción
Sumario:In late 2019, the emergence of COVID-19 in Wuhan, China, led to the implementation of stringent measures forming the zero-COVID policy aimed at eliminating transmission. Zero-COVID policy basically aimed at completely eliminating the transmission of COVID-19. However, the relaxation of this policy in late 2022 reportedly resulted in a rapid surge of COVID-19 cases. The aim of this work is to investigate the factors contributing to this outbreak using a new SEIR-type epidemic model with time-dependent level of immunity. Our model incorporates a time-dependent level of immunity considering vaccine doses administered and time-post-vaccination dependent vaccine efficacy. We find that vaccine efficacy plays a significant role in determining the outbreak size and maximum number of daily infected. Additionally, our model considers under-reporting in daily cases and deaths, revealing their combined effects on the outbreak magnitude. We also introduce a novel Physics Informed Neural Networks (PINNs) approach which is extremely useful in estimating critical parameters and helps in evaluating the predictive capability of our model.