Cargando…

Enzyme-Triggered Intestine-Specific Targeting Adhesive Platform for Universal Oral Drug Delivery

Patient adherence to chronic therapies can be suboptimal, leading to poor therapeutic outcomes. Dosage forms that enable reduction in dosing frequency stand to improve patient adherence. Variation in gastrointestinal transit time, inter-individual differences in gastrointestinal physiology and diffe...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ying, Seung Lee, Jung, Kirtane, Ameya R., Li, Mengyuan, William Coffey, Charles, Hess, Kaitlyn, Lopes, Aaron, Collins, Joy, Tamang, Siddartha, Ishida, Keiko, Hayward, Alison, Wainer, Jacob, Wentworth, Adam J., Traverso, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653991/
https://www.ncbi.nlm.nih.gov/pubmed/37314859
http://dx.doi.org/10.1002/adhm.202301033
Descripción
Sumario:Patient adherence to chronic therapies can be suboptimal, leading to poor therapeutic outcomes. Dosage forms that enable reduction in dosing frequency stand to improve patient adherence. Variation in gastrointestinal transit time, inter-individual differences in gastrointestinal physiology and differences in physicochemical properties of drugs represent challenges to the development of such systems. To this end, a small intestine-targeted drug delivery system is developed, where prolonged gastrointestinal retention and sustained release are achieved through tissue adhesion of drug pills mediated by an essential intestinal enzyme catalase. Here proof-of-concept pharmacokinetics is demonstrated in the swine model for two drugs, hydrophilic amoxicillin and hydrophobic levodopa. It is anticipated that this system can be applicable for many drugs with a diverse of physicochemical characteristics.