Cargando…

Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis

Polymicrobial biofilms are present in many environments particularly in the human oral cavity where they can prevent or facilitate the onset of disease. While recent advances have provided a clear picture of both the constituents and their biogeographic arrangement, it is still unclear what mechanis...

Descripción completa

Detalles Bibliográficos
Autores principales: Almeida, Eric, Puri, Surendra, Labossiere, Alex, Elangovan, Subashini, Kim, Jiyeon, Ramsey, Matthew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654079/
https://www.ncbi.nlm.nih.gov/pubmed/37610230
http://dx.doi.org/10.1128/msystems.00115-23
_version_ 1785136553046048768
author Almeida, Eric
Puri, Surendra
Labossiere, Alex
Elangovan, Subashini
Kim, Jiyeon
Ramsey, Matthew
author_facet Almeida, Eric
Puri, Surendra
Labossiere, Alex
Elangovan, Subashini
Kim, Jiyeon
Ramsey, Matthew
author_sort Almeida, Eric
collection PubMed
description Polymicrobial biofilms are present in many environments particularly in the human oral cavity where they can prevent or facilitate the onset of disease. While recent advances have provided a clear picture of both the constituents and their biogeographic arrangement, it is still unclear what mechanisms of interaction occur between individual species in close proximity within these communities. In this study, we investigated two mechanisms of interaction between the highly abundant supragingival plaque (SUPP) commensal Corynebacterium matruchotii and Streptococcus mitis which are directly adjacent/attached in vivo. We discovered that C. matruchotii enhanced the fitness of streptococci dependent on its ability to detoxify streptococcal-produced hydrogen peroxide and its ability to oxidize lactate also produced by streptococci. We demonstrate that the fitness of adjacent streptococci was linked to that of C. matruchotii and that these mechanisms support the previously described “corncob” arrangement between these species but that this is favorable only in aerobic conditions. Furthermore, we utilized scanning electrochemical microscopy to quantify lactate production and consumption between individual bacterial cells for the first time, revealing that lactate oxidation provides a fitness benefit to S. mitis not due to pH mitigation. This study describes mechanistic interactions between two highly abundant human commensals that can explain their observed in vivo spatial arrangements and suggest a way by which they may help preserve a healthy oral bacterial community. IMPORTANCE: As the microbiome era matures, the need for mechanistic interaction data between species is crucial to understand how stable microbiomes are preserved, especially in healthy conditions where the microbiota could help resist opportunistic or exogenous pathogens. Here we reveal multiple mechanisms of interaction between two commensals that dictate their biogeographic relationship to each other in previously described structures in human supragingival plaque. Using a novel variation for chemical detection, we observed metabolite exchange between individual bacterial cells in real time validating the ability of these organisms to carry out metabolic crossfeeding at distal and temporal scales observed in vivo. These findings reveal one way by which these interactions are both favorable to the interacting commensals and potentially the host.
format Online
Article
Text
id pubmed-10654079
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-106540792023-08-23 Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis Almeida, Eric Puri, Surendra Labossiere, Alex Elangovan, Subashini Kim, Jiyeon Ramsey, Matthew mSystems Research Article Polymicrobial biofilms are present in many environments particularly in the human oral cavity where they can prevent or facilitate the onset of disease. While recent advances have provided a clear picture of both the constituents and their biogeographic arrangement, it is still unclear what mechanisms of interaction occur between individual species in close proximity within these communities. In this study, we investigated two mechanisms of interaction between the highly abundant supragingival plaque (SUPP) commensal Corynebacterium matruchotii and Streptococcus mitis which are directly adjacent/attached in vivo. We discovered that C. matruchotii enhanced the fitness of streptococci dependent on its ability to detoxify streptococcal-produced hydrogen peroxide and its ability to oxidize lactate also produced by streptococci. We demonstrate that the fitness of adjacent streptococci was linked to that of C. matruchotii and that these mechanisms support the previously described “corncob” arrangement between these species but that this is favorable only in aerobic conditions. Furthermore, we utilized scanning electrochemical microscopy to quantify lactate production and consumption between individual bacterial cells for the first time, revealing that lactate oxidation provides a fitness benefit to S. mitis not due to pH mitigation. This study describes mechanistic interactions between two highly abundant human commensals that can explain their observed in vivo spatial arrangements and suggest a way by which they may help preserve a healthy oral bacterial community. IMPORTANCE: As the microbiome era matures, the need for mechanistic interaction data between species is crucial to understand how stable microbiomes are preserved, especially in healthy conditions where the microbiota could help resist opportunistic or exogenous pathogens. Here we reveal multiple mechanisms of interaction between two commensals that dictate their biogeographic relationship to each other in previously described structures in human supragingival plaque. Using a novel variation for chemical detection, we observed metabolite exchange between individual bacterial cells in real time validating the ability of these organisms to carry out metabolic crossfeeding at distal and temporal scales observed in vivo. These findings reveal one way by which these interactions are both favorable to the interacting commensals and potentially the host. American Society for Microbiology 2023-08-23 /pmc/articles/PMC10654079/ /pubmed/37610230 http://dx.doi.org/10.1128/msystems.00115-23 Text en Copyright © 2023 Almeida et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Almeida, Eric
Puri, Surendra
Labossiere, Alex
Elangovan, Subashini
Kim, Jiyeon
Ramsey, Matthew
Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis
title Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis
title_full Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis
title_fullStr Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis
title_full_unstemmed Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis
title_short Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis
title_sort bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals corynebacterium matruchotii and streptococcus mitis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654079/
https://www.ncbi.nlm.nih.gov/pubmed/37610230
http://dx.doi.org/10.1128/msystems.00115-23
work_keys_str_mv AT almeidaeric bacterialmultispeciesinteractionmechanismsdictatebiogeographicarrangementbetweentheoralcommensalscorynebacteriummatruchotiiandstreptococcusmitis
AT purisurendra bacterialmultispeciesinteractionmechanismsdictatebiogeographicarrangementbetweentheoralcommensalscorynebacteriummatruchotiiandstreptococcusmitis
AT labossierealex bacterialmultispeciesinteractionmechanismsdictatebiogeographicarrangementbetweentheoralcommensalscorynebacteriummatruchotiiandstreptococcusmitis
AT elangovansubashini bacterialmultispeciesinteractionmechanismsdictatebiogeographicarrangementbetweentheoralcommensalscorynebacteriummatruchotiiandstreptococcusmitis
AT kimjiyeon bacterialmultispeciesinteractionmechanismsdictatebiogeographicarrangementbetweentheoralcommensalscorynebacteriummatruchotiiandstreptococcusmitis
AT ramseymatthew bacterialmultispeciesinteractionmechanismsdictatebiogeographicarrangementbetweentheoralcommensalscorynebacteriummatruchotiiandstreptococcusmitis