Cargando…
Deep learning workflow for the inverse design of molecules with specific optoelectronic properties
The inverse design of novel molecules with a desirable optoelectronic property requires consideration of the vast chemical spaces associated with varying chemical composition and molecular size. First principles-based property predictions have become increasingly helpful for assisting the selection...
Autores principales: | Yoo, Pilsun, Bhowmik, Debsindhu, Mehta, Kshitij, Zhang, Pei, Liu, Frank, Lupo Pasini, Massimiliano, Irle, Stephan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654498/ https://www.ncbi.nlm.nih.gov/pubmed/37973879 http://dx.doi.org/10.1038/s41598-023-45385-9 |
Ejemplares similares
-
Two excited-state datasets for quantum chemical UV-vis spectra of organic molecules
por: Lupo Pasini, Massimiliano, et al.
Publicado: (2023) -
Scalable training of graph convolutional neural networks for fast and accurate predictions of HOMO-LUMO gap in molecules
por: Choi, Jong Youl, et al.
Publicado: (2022) -
Adaptive language model training for molecular design
por: Blanchard, Andrew E., et al.
Publicado: (2023) -
Using GANs with adaptive training data to search for new molecules
por: Blanchard, Andrew E., et al.
Publicado: (2021) -
Deep clustering of protein folding simulations
por: Bhowmik, Debsindhu, et al.
Publicado: (2018)