Cargando…

Phytochemical analysis and biological activities of essential oils extracted from Origanum grossii and Thymus pallidus: in vitro and in silico analysis

The study aimed at investigating the phytochemical composition, antioxidant and antibacterial activities of essential oils (EOs) of Origanum grossii and Thymus pallidus. The selection of these plants for the study was driven by a comprehensive survey conducted in the Ribat Elkheir region of Morocco,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zejli, Hind, Fitat, Aziza, Lefrioui, Youssra, Siddique, Farhan, Bourhia, Mohammed, Bousseraf, Fatima Zahra, Salamatullah, Ahmad Mohammad, Nafidi, Hiba-Allah, Mekonnen, Amare Bitew, Gourch, Abdelkader, Taleb, Mustapha, Abdellaoui, Abdelfattah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654524/
https://www.ncbi.nlm.nih.gov/pubmed/37973884
http://dx.doi.org/10.1038/s41598-023-47215-4
Descripción
Sumario:The study aimed at investigating the phytochemical composition, antioxidant and antibacterial activities of essential oils (EOs) of Origanum grossii and Thymus pallidus. The selection of these plants for the study was driven by a comprehensive survey conducted in the Ribat Elkheir region of Morocco, where these plants are widely utilized. The results reflect the valorization of these plants based on the findings of the regional survey. The GC–MS phytochemical analysis revealed that the main constituents of the essential oil were carvacrol and thymol for O. grossii and T. pallidus respectively. Quantitative assays demonstrated that O. grossii exhibited higher levels of polyphenols (0.136 mg AGE/mg EO) and flavonoids (0.207 mg QE/mg EO) compared to T. pallidus. The DPPH assay indicated that O. grossii EOs possessed approximately twice the antiradical activity of T. pallidus, with IC(50) values of approximately 0.073 mg/mL and 0.131 mg/mL, respectively. The antibacterial activity tests showed that both essential oils exhibited significant inhibition zones ranging from 26 to 42 mm against all tested bacterial strains. The MIC values varied among the bacteria, generally falling within the range of 0.31 to 2.44 µg/mL, demonstrating the potency of the EOs to serve as antibacterial. Molecular docking revealed that O. grossii and T. pallidus essential oils interact with antibacterial and antioxidant proteins (1AJ6 and 6QME). Key compounds in O. grossii include p-cymene, eucalyptol, and carvacrol, while T. pallidus contains potent chemicals like p-cymene, ɤ-maaliene, valencene, α-terpinene, caryophyllene, himachalene, and thymol. Notably, the most potent chemicals in Origanum grossii are p-cymene, eucalyptol, and carvacrol, while the most potent chemicals in Thymus pallidus are p-cymene, α-terpinene, and thymol. These findings suggest that these plant EOs could be used to develop new natural products with antibacterial and antioxidant activity.