Cargando…
An open-source dataset for arabic fine-grained emotion recognition of online content amid COVID-19 pandemic
Emotion recognition is a crucial task in Natural Language Processing (NLP) that enables machines to comprehend the feelings conveyed in the text. The task involves detecting and recognizing various human emotions like anger, fear, joy, and sadness. The applications of emotion recognition are diverse...
Autor principal: | Althobaiti, Maha Jarallah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654532/ https://www.ncbi.nlm.nih.gov/pubmed/38020433 http://dx.doi.org/10.1016/j.dib.2023.109745 |
Ejemplares similares
-
Multi-label multi-class COVID-19 Arabic Twitter dataset with fine-grained misinformation and situational information annotations
por: Obeidat, Rasha, et al.
Publicado: (2022) -
A skin lesion hair mask dataset with fine-grained annotations
por: Hossain, Sk Imran, et al.
Publicado: (2023) -
CherryChèvre: A fine-grained dataset for goat detection in natural environments
por: Vayssade, Jehan-Antoine, et al.
Publicado: (2023) -
The MoCA dataset, kinematic and multi-view visual streams of fine-grained cooking actions
por: Nicora, Elena, et al.
Publicado: (2020) -
ANAD: Arabic news article dataset
por: Altamimi, Mohammed, et al.
Publicado: (2023)