Cargando…
ADMET property prediction via multi-task graph learning under adaptive auxiliary task selection
It is a critical step in lead optimization to evaluate the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of drug-like compounds. Classical single-task learning (STL) has effectively predicted individual ADMET endpoints with abundant labels. Conversely, multi-task l...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654589/ https://www.ncbi.nlm.nih.gov/pubmed/38026198 http://dx.doi.org/10.1016/j.isci.2023.108285 |
Sumario: | It is a critical step in lead optimization to evaluate the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of drug-like compounds. Classical single-task learning (STL) has effectively predicted individual ADMET endpoints with abundant labels. Conversely, multi-task learning (MTL) can predict multiple ADMET endpoints with fewer labels, but ensuring task synergy and highlighting key molecular substructures remain challenges. To tackle these issues, this work elaborates a multi-task graph learning framework for predicting multiple ADMET properties of drug-like small molecules (MTGL-ADMET) by holding a new paradigm of MTL, “one primary, multiple auxiliaries.” It first adeptly combines status theory with maximum flow for auxiliary task selection. The subsequent phase introduces a primary-task-centric MTL model with integrated modules. MTGL-ADMET not only outstrips existing STL and MTL methods but also offers a transparent lens into crucial molecular substructures. It is anticipated that this work can promote lead compound finding and optimization in drug discovery. |
---|