Cargando…
ADMET property prediction via multi-task graph learning under adaptive auxiliary task selection
It is a critical step in lead optimization to evaluate the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of drug-like compounds. Classical single-task learning (STL) has effectively predicted individual ADMET endpoints with abundant labels. Conversely, multi-task l...
Autores principales: | Du, Bing-Xue, Xu, Yi, Yiu, Siu-Ming, Yu, Hui, Shi, Jian-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654589/ https://www.ncbi.nlm.nih.gov/pubmed/38026198 http://dx.doi.org/10.1016/j.isci.2023.108285 |
Ejemplares similares
-
A Multi-Task Representation Learning Architecture for Enhanced Graph Classification
por: Xie, Yu, et al.
Publicado: (2020) -
Auxiliary Graph for Attribute Graph Clustering
por: Li, Wang, et al.
Publicado: (2022) -
MLGL-MP: a Multi-Label Graph Learning framework enhanced by pathway interdependence for Metabolic Pathway prediction
por: Du, Bing-Xue, et al.
Publicado: (2022) -
Graph Theory of Tower Tasks
por: Hinz, Andreas M.
Publicado: (2012) -
Health-Aware Food Recommendation Based on Knowledge Graph and Multi-Task Learning
por: Chen, Yi, et al.
Publicado: (2023)