Cargando…
Imputation of missing daily rainfall data; A comparison between artificial intelligence and statistical techniques
Handling missing values is a critical component of the data processing in hydrological modeling. The key objective of this research is to assess statistical techniques (STs) and artificial intelligence-based techniques (AITs) for imputing missing daily rainfall values and recommend a methodology app...
Autores principales: | Wangwongchai, Angkool, Waqas, Muhammad, Dechpichai, Porntip, Hlaing, Phyo Thandar, Ahmad, Shakeel, Humphries, Usa Wannasingha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654590/ https://www.ncbi.nlm.nih.gov/pubmed/38023312 http://dx.doi.org/10.1016/j.mex.2023.102459 |
Ejemplares similares
-
A Well-Posed Fractional Order Cholera Model with Saturated Incidence Rate
por: Baba, Isa Abdullahi, et al.
Publicado: (2023) -
Role of Vaccines in Controlling the Spread of COVID-19: A Fractional-Order Model
por: Baba, Isa Abdullahi, et al.
Publicado: (2023) -
Statistical analysis of annual maximum daily rainfall for Nelspruit and its environs
por: Masereka, Eric M., et al.
Publicado: (2018) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Stochastic COVID-19 SEIQ epidemic model with time-delay
por: Khan, Amir, et al.
Publicado: (2021)