Cargando…
Cephalometric landmark detection without X-rays combining coordinate regression and heatmap regression
Fully automated techniques using convolutional neural networks for cephalometric landmark detection have recently advanced. However, all existing studies have adopted X-rays. The problem of direct exposure of patients to X-ray radiation remains unsolved. We propose a model for detecting cephalometri...
Autores principales: | Takahashi, Kaisei, Shimamura, Yui, Tachiki, Chie, Nishii, Yasushi, Hagiwara, Masafumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654665/ https://www.ncbi.nlm.nih.gov/pubmed/37974018 http://dx.doi.org/10.1038/s41598-023-46919-x |
Ejemplares similares
-
Learning Cephalometric Landmarks for Diagnostic Features Using Regression Trees
por: Suhail, Sameera, et al.
Publicado: (2022) -
Point detection through multi-instance deep heatmap regression for sutures in endoscopy
por: Sharan, Lalith, et al.
Publicado: (2021) -
COVID-19 detection and heatmap generation in chest x-ray images
por: Kusakunniran, Worapan, et al.
Publicado: (2021) -
Ceph-Net: automatic detection of cephalometric landmarks on scanned lateral cephalograms from children and adolescents using an attention-based stacked regression network
por: Yang, Su, et al.
Publicado: (2023) -
Factors Influencing Superimposition Error of 3D Cephalometric Landmarks by Plane Orientation Method Using 4 Reference Points: 4 Point Superimposition Error Regression Model
por: Hwang, Jae Joon, et al.
Publicado: (2014)