Cargando…
Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography
Chemical short-range order (CSRO) refers to atoms of specific elements self-organising within a disordered crystalline matrix to form particular atomic neighbourhoods. CSRO is typically characterized indirectly, using volume-averaged or through projection microscopy techniques that fail to capture t...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654683/ https://www.ncbi.nlm.nih.gov/pubmed/37973821 http://dx.doi.org/10.1038/s41467-023-43314-y |
_version_ | 1785147869706059776 |
---|---|
author | Li, Yue Wei, Ye Wang, Zhangwei Liu, Xiaochun Colnaghi, Timoteo Han, Liuliu Rao, Ziyuan Zhou, Xuyang Huber, Liam Dsouza, Raynol Gong, Yilun Neugebauer, Jörg Marek, Andreas Rampp, Markus Bauer, Stefan Li, Hongxiang Baker, Ian Stephenson, Leigh T. Gault, Baptiste |
author_facet | Li, Yue Wei, Ye Wang, Zhangwei Liu, Xiaochun Colnaghi, Timoteo Han, Liuliu Rao, Ziyuan Zhou, Xuyang Huber, Liam Dsouza, Raynol Gong, Yilun Neugebauer, Jörg Marek, Andreas Rampp, Markus Bauer, Stefan Li, Hongxiang Baker, Ian Stephenson, Leigh T. Gault, Baptiste |
author_sort | Li, Yue |
collection | PubMed |
description | Chemical short-range order (CSRO) refers to atoms of specific elements self-organising within a disordered crystalline matrix to form particular atomic neighbourhoods. CSRO is typically characterized indirectly, using volume-averaged or through projection microscopy techniques that fail to capture the three-dimensional atomistic architectures. Here, we present a machine-learning enhanced approach to break the inherent resolution limits of atom probe tomography enabling three-dimensional imaging of multiple CSROs. We showcase our approach by addressing a long-standing question encountered in body-centred-cubic Fe-Al alloys that see anomalous property changes upon heat treatment. We use it to evidence non-statistical B(2)-CSRO instead of the generally-expected D0(3)-CSRO. We introduce quantitative correlations among annealing temperature, CSRO, and nano-hardness and electrical resistivity. Our approach is further validated on modified D0(3)-CSRO detected in Fe-Ga. The proposed strategy can be generally employed to investigate short/medium/long-range ordering phenomena in different materials and help design future high-performance materials. |
format | Online Article Text |
id | pubmed-10654683 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106546832023-11-16 Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography Li, Yue Wei, Ye Wang, Zhangwei Liu, Xiaochun Colnaghi, Timoteo Han, Liuliu Rao, Ziyuan Zhou, Xuyang Huber, Liam Dsouza, Raynol Gong, Yilun Neugebauer, Jörg Marek, Andreas Rampp, Markus Bauer, Stefan Li, Hongxiang Baker, Ian Stephenson, Leigh T. Gault, Baptiste Nat Commun Article Chemical short-range order (CSRO) refers to atoms of specific elements self-organising within a disordered crystalline matrix to form particular atomic neighbourhoods. CSRO is typically characterized indirectly, using volume-averaged or through projection microscopy techniques that fail to capture the three-dimensional atomistic architectures. Here, we present a machine-learning enhanced approach to break the inherent resolution limits of atom probe tomography enabling three-dimensional imaging of multiple CSROs. We showcase our approach by addressing a long-standing question encountered in body-centred-cubic Fe-Al alloys that see anomalous property changes upon heat treatment. We use it to evidence non-statistical B(2)-CSRO instead of the generally-expected D0(3)-CSRO. We introduce quantitative correlations among annealing temperature, CSRO, and nano-hardness and electrical resistivity. Our approach is further validated on modified D0(3)-CSRO detected in Fe-Ga. The proposed strategy can be generally employed to investigate short/medium/long-range ordering phenomena in different materials and help design future high-performance materials. Nature Publishing Group UK 2023-11-16 /pmc/articles/PMC10654683/ /pubmed/37973821 http://dx.doi.org/10.1038/s41467-023-43314-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Li, Yue Wei, Ye Wang, Zhangwei Liu, Xiaochun Colnaghi, Timoteo Han, Liuliu Rao, Ziyuan Zhou, Xuyang Huber, Liam Dsouza, Raynol Gong, Yilun Neugebauer, Jörg Marek, Andreas Rampp, Markus Bauer, Stefan Li, Hongxiang Baker, Ian Stephenson, Leigh T. Gault, Baptiste Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography |
title | Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography |
title_full | Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography |
title_fullStr | Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography |
title_full_unstemmed | Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography |
title_short | Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography |
title_sort | quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654683/ https://www.ncbi.nlm.nih.gov/pubmed/37973821 http://dx.doi.org/10.1038/s41467-023-43314-y |
work_keys_str_mv | AT liyue quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT weiye quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT wangzhangwei quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT liuxiaochun quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT colnaghitimoteo quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT hanliuliu quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT raoziyuan quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT zhouxuyang quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT huberliam quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT dsouzaraynol quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT gongyilun quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT neugebauerjorg quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT marekandreas quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT ramppmarkus quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT bauerstefan quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT lihongxiang quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT bakerian quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT stephensonleight quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography AT gaultbaptiste quantitativethreedimensionalimagingofchemicalshortrangeorderviamachinelearningenhancedatomprobetomography |