Cargando…
Splitting tensile strength prediction of Metakaolin concrete using machine learning techniques
Splitting tensile strength (STS) is an important mechanical property of concrete. Modeling and predicting the STS of concrete containing Metakaolin is an important method for analyzing the mechanical properties. In this paper, four machine learning models, namely, Artificial Neural Network (ANN), su...
Autores principales: | Li, Qiang, Ren, Guoqi, Wang, Haoran, Xu, Qikeng, Zhao, Jinquan, Wang, Huifen, Ding, Yonggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654708/ https://www.ncbi.nlm.nih.gov/pubmed/37973915 http://dx.doi.org/10.1038/s41598-023-47196-4 |
Ejemplares similares
-
Application of Machine Learning Techniques for Predicting Compressive, Splitting Tensile, and Flexural Strengths of Concrete with Metakaolin
por: Shah, Hammad Ahmed, et al.
Publicado: (2022) -
Length Effect at Testing Splitting Tensile Strength of Concrete
por: Słowik, Marta, et al.
Publicado: (2021) -
Physics-assisted machine learning methods for predicting the splitting tensile strength of recycled aggregate concrete
por: Liu, Jianguo, et al.
Publicado: (2023) -
A Comparison of Machine Learning Tools That Model the Splitting Tensile Strength of Self-Compacting Recycled Aggregate Concrete
por: de-Prado-Gil, Jesús, et al.
Publicado: (2022) -
Cement Equivalence of Metakaolin for Workability, Cohesiveness, Strength and Sorptivity of Concrete
por: Chen, J.J., et al.
Publicado: (2020)