Cargando…
Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia
Introduction: There is growing evidence of research indicating that the gut microbiota is involved in the development of sarcopenia. Nevertheless, there exists a notable deficiency in comprehension concerning the connection between irregularities in the intestinal microbiome and metabolic processes...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654747/ https://www.ncbi.nlm.nih.gov/pubmed/38026977 http://dx.doi.org/10.3389/fphar.2023.1279448 |
_version_ | 1785136692491976704 |
---|---|
author | Zhou, Jing Liu, Jiang Lin, Qinqing Shi, Linhui Zeng, Zhigang Guan, Lichang Ma, Yunzi Zeng, Yingtong Zhong, Shilong Xu, Lishu |
author_facet | Zhou, Jing Liu, Jiang Lin, Qinqing Shi, Linhui Zeng, Zhigang Guan, Lichang Ma, Yunzi Zeng, Yingtong Zhong, Shilong Xu, Lishu |
author_sort | Zhou, Jing |
collection | PubMed |
description | Introduction: There is growing evidence of research indicating that the gut microbiota is involved in the development of sarcopenia. Nevertheless, there exists a notable deficiency in comprehension concerning the connection between irregularities in the intestinal microbiome and metabolic processes in older individuals suffering from sarcopenia. Methods: To analyze fecal samples obtained from a cohort of 30 older patients diagnosed with sarcopenia as well as 30 older patients without sarcopenia, this study employed 16S rDNA sequencing and liquid chromatography-mass spectrometry (LC-MS)-based non-targeted metabolomics profiling techniques. Results: As a result, we found that 29 genera and 172 metabolites were significantly altered in the sarcopenic patients. Among them, Blautia, Lachnospiraceae_unclassified, and Subdoligranulum were the bacteria with a potential diagnostic value for sarcopenia diagnosis. Correlation analysis between clinical indices and these gut bacteria suggested that the IL-6 level was negatively correlated with Blautia. Function prediction analysis demonstrated that 17 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways differ significantly between sarcopenic and non-sarcopenic patients. The primary classes of metabolites identified in the study included lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds. KEGG enrichment analysis showed that purine metabolism, arginine and proline metabolism, alanine, aspartate, and glutamate metabolism, butanoate metabolism, and histidine metabolism may contribute to the development of sarcopenia. The correlation study on gut microbiota and metabolites found that Lachnospiraceae_unclassified was positively associated with seven metabolites that were more abundant in the non-sarcopenia group and negatively correlated with three metabolites that were more abundant in the sarcopenia group. In addition, Subdoligranulum was positively correlated with seven metabolites that were lacking in sarcopenia and negatively correlated with two metabolites that were enriching in sarcopenia. Moreover, Blautia was positively associated with xanthosine. Discussion: We conducted a study on the intestinal microbiota and metabolic profile of elderly individuals with sarcopenia, offering a comprehensive analysis of the overall ecosystem. Through this investigation, we were able to validate existing research on the gut–muscle axis and further investigate potential pathogenic processes and treatment options for sarcopenia. |
format | Online Article Text |
id | pubmed-10654747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106547472023-11-03 Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia Zhou, Jing Liu, Jiang Lin, Qinqing Shi, Linhui Zeng, Zhigang Guan, Lichang Ma, Yunzi Zeng, Yingtong Zhong, Shilong Xu, Lishu Front Pharmacol Pharmacology Introduction: There is growing evidence of research indicating that the gut microbiota is involved in the development of sarcopenia. Nevertheless, there exists a notable deficiency in comprehension concerning the connection between irregularities in the intestinal microbiome and metabolic processes in older individuals suffering from sarcopenia. Methods: To analyze fecal samples obtained from a cohort of 30 older patients diagnosed with sarcopenia as well as 30 older patients without sarcopenia, this study employed 16S rDNA sequencing and liquid chromatography-mass spectrometry (LC-MS)-based non-targeted metabolomics profiling techniques. Results: As a result, we found that 29 genera and 172 metabolites were significantly altered in the sarcopenic patients. Among them, Blautia, Lachnospiraceae_unclassified, and Subdoligranulum were the bacteria with a potential diagnostic value for sarcopenia diagnosis. Correlation analysis between clinical indices and these gut bacteria suggested that the IL-6 level was negatively correlated with Blautia. Function prediction analysis demonstrated that 17 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways differ significantly between sarcopenic and non-sarcopenic patients. The primary classes of metabolites identified in the study included lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds. KEGG enrichment analysis showed that purine metabolism, arginine and proline metabolism, alanine, aspartate, and glutamate metabolism, butanoate metabolism, and histidine metabolism may contribute to the development of sarcopenia. The correlation study on gut microbiota and metabolites found that Lachnospiraceae_unclassified was positively associated with seven metabolites that were more abundant in the non-sarcopenia group and negatively correlated with three metabolites that were more abundant in the sarcopenia group. In addition, Subdoligranulum was positively correlated with seven metabolites that were lacking in sarcopenia and negatively correlated with two metabolites that were enriching in sarcopenia. Moreover, Blautia was positively associated with xanthosine. Discussion: We conducted a study on the intestinal microbiota and metabolic profile of elderly individuals with sarcopenia, offering a comprehensive analysis of the overall ecosystem. Through this investigation, we were able to validate existing research on the gut–muscle axis and further investigate potential pathogenic processes and treatment options for sarcopenia. Frontiers Media S.A. 2023-11-03 /pmc/articles/PMC10654747/ /pubmed/38026977 http://dx.doi.org/10.3389/fphar.2023.1279448 Text en Copyright © 2023 Zhou, Liu, Lin, Shi, Zeng, Guan, Ma, Zeng, Zhong and Xu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Zhou, Jing Liu, Jiang Lin, Qinqing Shi, Linhui Zeng, Zhigang Guan, Lichang Ma, Yunzi Zeng, Yingtong Zhong, Shilong Xu, Lishu Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia |
title | Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia |
title_full | Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia |
title_fullStr | Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia |
title_full_unstemmed | Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia |
title_short | Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia |
title_sort | characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654747/ https://www.ncbi.nlm.nih.gov/pubmed/38026977 http://dx.doi.org/10.3389/fphar.2023.1279448 |
work_keys_str_mv | AT zhoujing characteristicsofthegutmicrobiomeandmetabolicprofileinelderlypatientswithsarcopenia AT liujiang characteristicsofthegutmicrobiomeandmetabolicprofileinelderlypatientswithsarcopenia AT linqinqing characteristicsofthegutmicrobiomeandmetabolicprofileinelderlypatientswithsarcopenia AT shilinhui characteristicsofthegutmicrobiomeandmetabolicprofileinelderlypatientswithsarcopenia AT zengzhigang characteristicsofthegutmicrobiomeandmetabolicprofileinelderlypatientswithsarcopenia AT guanlichang characteristicsofthegutmicrobiomeandmetabolicprofileinelderlypatientswithsarcopenia AT mayunzi characteristicsofthegutmicrobiomeandmetabolicprofileinelderlypatientswithsarcopenia AT zengyingtong characteristicsofthegutmicrobiomeandmetabolicprofileinelderlypatientswithsarcopenia AT zhongshilong characteristicsofthegutmicrobiomeandmetabolicprofileinelderlypatientswithsarcopenia AT xulishu characteristicsofthegutmicrobiomeandmetabolicprofileinelderlypatientswithsarcopenia |