Cargando…
Image-encoded biological and non-biological variables may be used as shortcuts in deep learning models trained on multisite neuroimaging data
OBJECTIVE: This work investigates if deep learning (DL) models can classify originating site locations directly from magnetic resonance imaging (MRI) scans with and without correction for intensity differences. MATERIAL AND METHODS: A large database of 1880 T1-weighted MRI scans collected across 41...
Autores principales: | Souza, Raissa, Wilms, Matthias, Camacho, Milton, Pike, G Bruce, Camicioli, Richard, Monchi, Oury, Forkert, Nils D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654841/ https://www.ncbi.nlm.nih.gov/pubmed/37669158 http://dx.doi.org/10.1093/jamia/ocad171 |
Ejemplares similares
-
Explainable classification of Parkinson’s disease using deep learning trained on a large multi-center database of T1-weighted MRI datasets
por: Camacho, Milton, et al.
Publicado: (2023) -
Motor symptoms in Parkinson’s disease are related to the interplay between cortical curvature and thickness
por: Almgren, Hannes, et al.
Publicado: (2022) -
Machine learning-based prediction of longitudinal cognitive decline in early Parkinson’s disease using multimodal features
por: Almgren, Hannes, et al.
Publicado: (2023) -
Taking the Shortcut: Simplifying Heuristics in Discrete Choice Experiments
por: Veldwijk, Jorien, et al.
Publicado: (2023) -
Structural Neuroimaging Markers of Cognitive Decline in Parkinson's Disease
por: Hanganu, Alexandru, et al.
Publicado: (2016)