Cargando…
A broadly applicable approach to enrich electronic-health-record cohorts by identifying patients with complete data: a multisite evaluation
OBJECTIVE: Patients who receive most care within a single healthcare system (colloquially called a “loyalty cohort” since they typically return to the same providers) have mostly complete data within that organization’s electronic health record (EHR). Loyalty cohorts have low data missingness, which...
Autores principales: | Klann, Jeffrey G, Henderson, Darren W, Morris, Michele, Estiri, Hossein, Weber, Griffin M, Visweswaran, Shyam, Murphy, Shawn N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654861/ https://www.ncbi.nlm.nih.gov/pubmed/37632234 http://dx.doi.org/10.1093/jamia/ocad166 |
Ejemplares similares
-
Exploring completeness in clinical data research networks with DQ(e)-c
por: Estiri, Hossein, et al.
Publicado: (2017) -
Generative transfer learning for measuring plausibility of EHR diagnosis records
por: Estiri, Hossein, et al.
Publicado: (2020) -
A clustering approach for detecting implausible observation values in electronic health records data
por: Estiri, Hossein, et al.
Publicado: (2019) -
A retrospective cohort analysis leveraging augmented intelligence to characterize long COVID in the electronic health record: A precision medicine framework
por: Strasser, Zachary H., et al.
Publicado: (2023) -
An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes
por: Estiri, Hossein, et al.
Publicado: (2022)