Cargando…
Charting Nanocluster Structures via Convolutional Neural Networks
[Image: see text] A general method to obtain a representation of the structural landscape of nanoparticles in terms of a limited number of variables is proposed. The method is applied to a large data set of parallel tempering molecular dynamics simulations of gold clusters of 90 and 147 atoms, silve...
Autores principales: | Telari, Emanuele, Tinti, Antonio, Settem, Manoj, Maragliano, Luca, Ferrando, Riccardo, Giacomello, Alberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655179/ https://www.ncbi.nlm.nih.gov/pubmed/37856254 http://dx.doi.org/10.1021/acsnano.3c05653 |
Ejemplares similares
-
A Multi-Purpose Shallow Convolutional Neural Network for Chart Images
por: Bajić, Filip, et al.
Publicado: (2022) -
Impact of chart image characteristics on stock price prediction with a convolutional neural network
por: Jin, Guangxun, et al.
Publicado: (2021) -
Structure and dynamics of water confined in cylindrical nanopores with varying hydrophobicity
por: Tinti, Antonio, et al.
Publicado: (2021) -
Drug-Drug Interaction Extraction via Convolutional Neural Networks
por: Liu, Shengyu, et al.
Publicado: (2016) -
Accurate Tumor Segmentation via Octave Convolution Neural Network
por: Wang, Bo, et al.
Publicado: (2021)