Cargando…

Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy

[Image: see text] Mechanistic probing of surface potential changes arising from dynamic charge transport is the key to understanding and engineering increasingly complex nanoscale materials and devices. Spatiotemporal averaging in conventional heterodyne detection-based Kelvin probe force microscopy...

Descripción completa

Detalles Bibliográficos
Autores principales: Biglarbeigi, Pardis, Morelli, Alessio, Pauly, Serene, Yu, Zidong, Jiang, Wenjun, Sharma, Surbhi, Finlay, Dewar, Kumar, Amit, Soin, Navneet, Payam, Amir Farokh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655243/
https://www.ncbi.nlm.nih.gov/pubmed/37877266
http://dx.doi.org/10.1021/acsnano.3c06488
_version_ 1785147904092012544
author Biglarbeigi, Pardis
Morelli, Alessio
Pauly, Serene
Yu, Zidong
Jiang, Wenjun
Sharma, Surbhi
Finlay, Dewar
Kumar, Amit
Soin, Navneet
Payam, Amir Farokh
author_facet Biglarbeigi, Pardis
Morelli, Alessio
Pauly, Serene
Yu, Zidong
Jiang, Wenjun
Sharma, Surbhi
Finlay, Dewar
Kumar, Amit
Soin, Navneet
Payam, Amir Farokh
author_sort Biglarbeigi, Pardis
collection PubMed
description [Image: see text] Mechanistic probing of surface potential changes arising from dynamic charge transport is the key to understanding and engineering increasingly complex nanoscale materials and devices. Spatiotemporal averaging in conventional heterodyne detection-based Kelvin probe force microscopy (KPFM) inherently limits its time resolution, causing an irretrievable loss of transient response and higher-order harmonics. Addressing this, we report a wavelet transform (WT)-based methodology capable of quantifying the sub-ms charge dynamics and probing the elusive transient response. The feedback-free, open-loop wavelet transform KPFM (OL-WT-KPFM) technique harnesses the WT’s ability to simultaneously extract spatial and temporal information from the photodetector signal to provide a dynamic mapping of surface potential, capacitance gradient, and dielectric constant at a temporal resolution 3 orders of magnitude higher than the lock-in time constant. We further demonstrate the method’s applicability to explore the surface-photovoltage-induced sub-ms hole-diffusion transient in bismuth oxyiodide semiconductor. The OL-WT-KPFM concept is readily applicable to commercial systems and can provide the underlying basis for the real-time analysis of transient electronic and electrochemical properties.
format Online
Article
Text
id pubmed-10655243
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-106552432023-11-17 Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy Biglarbeigi, Pardis Morelli, Alessio Pauly, Serene Yu, Zidong Jiang, Wenjun Sharma, Surbhi Finlay, Dewar Kumar, Amit Soin, Navneet Payam, Amir Farokh ACS Nano [Image: see text] Mechanistic probing of surface potential changes arising from dynamic charge transport is the key to understanding and engineering increasingly complex nanoscale materials and devices. Spatiotemporal averaging in conventional heterodyne detection-based Kelvin probe force microscopy (KPFM) inherently limits its time resolution, causing an irretrievable loss of transient response and higher-order harmonics. Addressing this, we report a wavelet transform (WT)-based methodology capable of quantifying the sub-ms charge dynamics and probing the elusive transient response. The feedback-free, open-loop wavelet transform KPFM (OL-WT-KPFM) technique harnesses the WT’s ability to simultaneously extract spatial and temporal information from the photodetector signal to provide a dynamic mapping of surface potential, capacitance gradient, and dielectric constant at a temporal resolution 3 orders of magnitude higher than the lock-in time constant. We further demonstrate the method’s applicability to explore the surface-photovoltage-induced sub-ms hole-diffusion transient in bismuth oxyiodide semiconductor. The OL-WT-KPFM concept is readily applicable to commercial systems and can provide the underlying basis for the real-time analysis of transient electronic and electrochemical properties. American Chemical Society 2023-10-25 /pmc/articles/PMC10655243/ /pubmed/37877266 http://dx.doi.org/10.1021/acsnano.3c06488 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Biglarbeigi, Pardis
Morelli, Alessio
Pauly, Serene
Yu, Zidong
Jiang, Wenjun
Sharma, Surbhi
Finlay, Dewar
Kumar, Amit
Soin, Navneet
Payam, Amir Farokh
Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy
title Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy
title_full Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy
title_fullStr Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy
title_full_unstemmed Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy
title_short Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy
title_sort unraveling spatiotemporal transient dynamics at the nanoscale via wavelet transform-based kelvin probe force microscopy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655243/
https://www.ncbi.nlm.nih.gov/pubmed/37877266
http://dx.doi.org/10.1021/acsnano.3c06488
work_keys_str_mv AT biglarbeigipardis unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy
AT morellialessio unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy
AT paulyserene unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy
AT yuzidong unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy
AT jiangwenjun unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy
AT sharmasurbhi unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy
AT finlaydewar unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy
AT kumaramit unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy
AT soinnavneet unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy
AT payamamirfarokh unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy