Cargando…
Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy
[Image: see text] Mechanistic probing of surface potential changes arising from dynamic charge transport is the key to understanding and engineering increasingly complex nanoscale materials and devices. Spatiotemporal averaging in conventional heterodyne detection-based Kelvin probe force microscopy...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655243/ https://www.ncbi.nlm.nih.gov/pubmed/37877266 http://dx.doi.org/10.1021/acsnano.3c06488 |
_version_ | 1785147904092012544 |
---|---|
author | Biglarbeigi, Pardis Morelli, Alessio Pauly, Serene Yu, Zidong Jiang, Wenjun Sharma, Surbhi Finlay, Dewar Kumar, Amit Soin, Navneet Payam, Amir Farokh |
author_facet | Biglarbeigi, Pardis Morelli, Alessio Pauly, Serene Yu, Zidong Jiang, Wenjun Sharma, Surbhi Finlay, Dewar Kumar, Amit Soin, Navneet Payam, Amir Farokh |
author_sort | Biglarbeigi, Pardis |
collection | PubMed |
description | [Image: see text] Mechanistic probing of surface potential changes arising from dynamic charge transport is the key to understanding and engineering increasingly complex nanoscale materials and devices. Spatiotemporal averaging in conventional heterodyne detection-based Kelvin probe force microscopy (KPFM) inherently limits its time resolution, causing an irretrievable loss of transient response and higher-order harmonics. Addressing this, we report a wavelet transform (WT)-based methodology capable of quantifying the sub-ms charge dynamics and probing the elusive transient response. The feedback-free, open-loop wavelet transform KPFM (OL-WT-KPFM) technique harnesses the WT’s ability to simultaneously extract spatial and temporal information from the photodetector signal to provide a dynamic mapping of surface potential, capacitance gradient, and dielectric constant at a temporal resolution 3 orders of magnitude higher than the lock-in time constant. We further demonstrate the method’s applicability to explore the surface-photovoltage-induced sub-ms hole-diffusion transient in bismuth oxyiodide semiconductor. The OL-WT-KPFM concept is readily applicable to commercial systems and can provide the underlying basis for the real-time analysis of transient electronic and electrochemical properties. |
format | Online Article Text |
id | pubmed-10655243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-106552432023-11-17 Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy Biglarbeigi, Pardis Morelli, Alessio Pauly, Serene Yu, Zidong Jiang, Wenjun Sharma, Surbhi Finlay, Dewar Kumar, Amit Soin, Navneet Payam, Amir Farokh ACS Nano [Image: see text] Mechanistic probing of surface potential changes arising from dynamic charge transport is the key to understanding and engineering increasingly complex nanoscale materials and devices. Spatiotemporal averaging in conventional heterodyne detection-based Kelvin probe force microscopy (KPFM) inherently limits its time resolution, causing an irretrievable loss of transient response and higher-order harmonics. Addressing this, we report a wavelet transform (WT)-based methodology capable of quantifying the sub-ms charge dynamics and probing the elusive transient response. The feedback-free, open-loop wavelet transform KPFM (OL-WT-KPFM) technique harnesses the WT’s ability to simultaneously extract spatial and temporal information from the photodetector signal to provide a dynamic mapping of surface potential, capacitance gradient, and dielectric constant at a temporal resolution 3 orders of magnitude higher than the lock-in time constant. We further demonstrate the method’s applicability to explore the surface-photovoltage-induced sub-ms hole-diffusion transient in bismuth oxyiodide semiconductor. The OL-WT-KPFM concept is readily applicable to commercial systems and can provide the underlying basis for the real-time analysis of transient electronic and electrochemical properties. American Chemical Society 2023-10-25 /pmc/articles/PMC10655243/ /pubmed/37877266 http://dx.doi.org/10.1021/acsnano.3c06488 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Biglarbeigi, Pardis Morelli, Alessio Pauly, Serene Yu, Zidong Jiang, Wenjun Sharma, Surbhi Finlay, Dewar Kumar, Amit Soin, Navneet Payam, Amir Farokh Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy |
title | Unraveling Spatiotemporal
Transient Dynamics at the
Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy |
title_full | Unraveling Spatiotemporal
Transient Dynamics at the
Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy |
title_fullStr | Unraveling Spatiotemporal
Transient Dynamics at the
Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy |
title_full_unstemmed | Unraveling Spatiotemporal
Transient Dynamics at the
Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy |
title_short | Unraveling Spatiotemporal
Transient Dynamics at the
Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy |
title_sort | unraveling spatiotemporal
transient dynamics at the
nanoscale via wavelet transform-based kelvin probe force microscopy |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655243/ https://www.ncbi.nlm.nih.gov/pubmed/37877266 http://dx.doi.org/10.1021/acsnano.3c06488 |
work_keys_str_mv | AT biglarbeigipardis unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy AT morellialessio unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy AT paulyserene unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy AT yuzidong unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy AT jiangwenjun unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy AT sharmasurbhi unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy AT finlaydewar unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy AT kumaramit unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy AT soinnavneet unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy AT payamamirfarokh unravelingspatiotemporaltransientdynamicsatthenanoscaleviawavelettransformbasedkelvinprobeforcemicroscopy |