Cargando…
Induction of tetraploids in Paper Mulberry (Broussonetia papyrifera (L.) L’Hér. ex Vent.) by colchicine
BACKGROUND: Broussonetia papyrifera (L.) L’Hér. ex Vent. has the characteristics of strong stress resistance, high crude protein content, and pruning tolerance. It is an ecological, economic, and medicinal plant. Polyploid plants usually perform better than their corresponding diploid plants in term...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655367/ https://www.ncbi.nlm.nih.gov/pubmed/37978431 http://dx.doi.org/10.1186/s12870-023-04487-2 |
Sumario: | BACKGROUND: Broussonetia papyrifera (L.) L’Hér. ex Vent. has the characteristics of strong stress resistance, high crude protein content, and pruning tolerance. It is an ecological, economic, and medicinal plant. Polyploid plants usually perform better than their corresponding diploid plants in terms of nutrients, active substances, and stress resistance. RESULTS: In this study, the leaves, calli, and seeds of diploid B. papyrifera were used for tetraploid induction by colchicine. The induction effect of colchicine on B. papyrifera was summarized through the early morphology, chromosome count and flow cytometry. It was concluded that the best induction effect (18.6%) was obtained when the leaves of B. papyrifera were treated in liquid MS (Murashige and Skoog) medium containing 450 mg·L(-1) colchicine for 3 d. The comparative analysis of the growth characteristics of diploid and tetraploid B. papyrifera showed that tetraploid B. papyrifera has larger ground diameter, larger stomata, thicker palisade tissue and thicker sponge tissue than diploid B. papyrifera. In addition, the measurement of photosynthetic features also showed that tetraploids had higher chlorophyll content and higher photosynthetic rates. CONCLUSION: This study showed that tetraploid B. papyrifera could be obtained by treating leaves, callus and seeds with liquid and solid colchicine, but the induction efficiency was different. Moreover, there were differences in stomata, leaf cell structure and photosynthetic features between tetraploid B. papyrifera and its corresponding diploid. The induced tetraploid B. papyrifera can provide a technical basis and breeding material for the creation of B. papyrifera germplasm resources in the future. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-023-04487-2. |
---|