Cargando…
N-of-one differential gene expression without control samples using a deep generative model
Differential analysis of bulk RNA-seq data often suffers from lack of good controls. Here, we present a generative model that replaces controls, trained solely on healthy tissues. The unsupervised model learns a low-dimensional representation and can identify the closest normal representation for a...
Autores principales: | Prada-Luengo, Iñigo, Schuster, Viktoria, Liang, Yuhu, Terkelsen, Thilde, Sora, Valentina, Krogh, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655485/ https://www.ncbi.nlm.nih.gov/pubmed/37974217 http://dx.doi.org/10.1186/s13059-023-03104-7 |
Ejemplares similares
-
CAncer bioMarker Prediction Pipeline (CAMPP)—A standardized framework for the analysis of quantitative biological data
por: Terkelsen, Thilde, et al.
Publicado: (2020) -
The Deep Generative Decoder: MAP estimation of representations improves modelling of single-cell RNA data
por: Schuster, Viktoria, et al.
Publicado: (2023) -
Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads
por: Prada-Luengo, Iñigo, et al.
Publicado: (2019) -
A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder
por: Schuster, Viktoria, et al.
Publicado: (2021) -
Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration
por: Terkelsen, Thilde, et al.
Publicado: (2020)