Cargando…
Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy
[Image: see text] The fundamental understanding of quantum dynamics in advanced materials requires precise characterization at the limit of spatiotemporal resolution. Ultrafast scanning tunneling microscopy is a powerful tool combining the benefits of picosecond time resolution provided by single-cy...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655500/ https://www.ncbi.nlm.nih.gov/pubmed/38027247 http://dx.doi.org/10.1021/acsphotonics.3c00555 |
_version_ | 1785147960837799936 |
---|---|
author | Allerbeck, Jonas Kuttruff, Joel Bobzien, Laric Huberich, Lysander Tsarev, Maxim Schuler, Bruno |
author_facet | Allerbeck, Jonas Kuttruff, Joel Bobzien, Laric Huberich, Lysander Tsarev, Maxim Schuler, Bruno |
author_sort | Allerbeck, Jonas |
collection | PubMed |
description | [Image: see text] The fundamental understanding of quantum dynamics in advanced materials requires precise characterization at the limit of spatiotemporal resolution. Ultrafast scanning tunneling microscopy is a powerful tool combining the benefits of picosecond time resolution provided by single-cycle terahertz (THz) pulses and atomic spatial resolution of a scanning tunneling microscope (STM). For the selective excitation of localized electronic states, the transient field profile must be tailored to the energetic structure of the system. Here, we present an advanced THz-STM setup combining multi-MHz repetition rates, strong THz near fields, and continuous carrier-envelope phase (CEP) control of the transient waveform. In particular, we employ frustrated total internal reflection as an efficient and cost-effective method for precise CEP control of single-cycle THz pulses with >60% field transmissivity, high pointing stability, and continuous phase shifting of up to 0.75 π in the far and near field. Efficient THz generation and dispersion management enable peak THz voltages at the tip–sample junction exceeding 20 V at 1 MHz and 1 V at 41 MHz. The system comprises two distinct THz generation arms, which facilitate individual pulse shaping and amplitude modulation. This unique feature enables the flexible implementation of various THz pump–probe schemes, thereby facilitating the study of electronic and excitonic excited-state propagation in nanostructures and low-dimensional materials systems. Scalability of the repetition rate up to 41 MHz, combined with a state-of-the-art low-temperature STM, paves the way toward the investigation of dynamical processes in atomic quantum systems at their native length and time scales. |
format | Online Article Text |
id | pubmed-10655500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-106555002023-11-17 Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy Allerbeck, Jonas Kuttruff, Joel Bobzien, Laric Huberich, Lysander Tsarev, Maxim Schuler, Bruno ACS Photonics [Image: see text] The fundamental understanding of quantum dynamics in advanced materials requires precise characterization at the limit of spatiotemporal resolution. Ultrafast scanning tunneling microscopy is a powerful tool combining the benefits of picosecond time resolution provided by single-cycle terahertz (THz) pulses and atomic spatial resolution of a scanning tunneling microscope (STM). For the selective excitation of localized electronic states, the transient field profile must be tailored to the energetic structure of the system. Here, we present an advanced THz-STM setup combining multi-MHz repetition rates, strong THz near fields, and continuous carrier-envelope phase (CEP) control of the transient waveform. In particular, we employ frustrated total internal reflection as an efficient and cost-effective method for precise CEP control of single-cycle THz pulses with >60% field transmissivity, high pointing stability, and continuous phase shifting of up to 0.75 π in the far and near field. Efficient THz generation and dispersion management enable peak THz voltages at the tip–sample junction exceeding 20 V at 1 MHz and 1 V at 41 MHz. The system comprises two distinct THz generation arms, which facilitate individual pulse shaping and amplitude modulation. This unique feature enables the flexible implementation of various THz pump–probe schemes, thereby facilitating the study of electronic and excitonic excited-state propagation in nanostructures and low-dimensional materials systems. Scalability of the repetition rate up to 41 MHz, combined with a state-of-the-art low-temperature STM, paves the way toward the investigation of dynamical processes in atomic quantum systems at their native length and time scales. American Chemical Society 2023-10-11 /pmc/articles/PMC10655500/ /pubmed/38027247 http://dx.doi.org/10.1021/acsphotonics.3c00555 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Allerbeck, Jonas Kuttruff, Joel Bobzien, Laric Huberich, Lysander Tsarev, Maxim Schuler, Bruno Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy |
title | Efficient and Continuous Carrier-Envelope Phase Control
for Terahertz Lightwave-Driven Scanning Probe Microscopy |
title_full | Efficient and Continuous Carrier-Envelope Phase Control
for Terahertz Lightwave-Driven Scanning Probe Microscopy |
title_fullStr | Efficient and Continuous Carrier-Envelope Phase Control
for Terahertz Lightwave-Driven Scanning Probe Microscopy |
title_full_unstemmed | Efficient and Continuous Carrier-Envelope Phase Control
for Terahertz Lightwave-Driven Scanning Probe Microscopy |
title_short | Efficient and Continuous Carrier-Envelope Phase Control
for Terahertz Lightwave-Driven Scanning Probe Microscopy |
title_sort | efficient and continuous carrier-envelope phase control
for terahertz lightwave-driven scanning probe microscopy |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655500/ https://www.ncbi.nlm.nih.gov/pubmed/38027247 http://dx.doi.org/10.1021/acsphotonics.3c00555 |
work_keys_str_mv | AT allerbeckjonas efficientandcontinuouscarrierenvelopephasecontrolforterahertzlightwavedrivenscanningprobemicroscopy AT kuttruffjoel efficientandcontinuouscarrierenvelopephasecontrolforterahertzlightwavedrivenscanningprobemicroscopy AT bobzienlaric efficientandcontinuouscarrierenvelopephasecontrolforterahertzlightwavedrivenscanningprobemicroscopy AT huberichlysander efficientandcontinuouscarrierenvelopephasecontrolforterahertzlightwavedrivenscanningprobemicroscopy AT tsarevmaxim efficientandcontinuouscarrierenvelopephasecontrolforterahertzlightwavedrivenscanningprobemicroscopy AT schulerbruno efficientandcontinuouscarrierenvelopephasecontrolforterahertzlightwavedrivenscanningprobemicroscopy |