Cargando…
Barriers for the performance of graph neural networks (GNN) in discrete random structures
Recently, graph neural network (GNN)-based algorithms were proposed to solve a variety of combinatorial optimization problems [M. J. Schuetz, J. K. Brubaker, H. G. Katzgraber, Nat. Mach. Intell.4, 367–377 (2022)]. GNN was tested in particular on randomly generated instances of these problems. The pu...
Autor principal: | Gamarnik, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655568/ https://www.ncbi.nlm.nih.gov/pubmed/37931095 http://dx.doi.org/10.1073/pnas.2314092120 |
Ejemplares similares
-
GNN-surv: Discrete-Time Survival Prediction Using Graph Neural Networks
por: Kim, So Yeon
Publicado: (2023) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
SS-GNN: A Simple-Structured Graph Neural Network for
Affinity Prediction
por: Zhang, Shuke, et al.
Publicado: (2023) -
ESA-FedGNN: Efficient secure aggregation for federated graph neural networks
por: Liu, Yanjun, et al.
Publicado: (2023)