Cargando…
Integrative bioinformatics analysis reveals STAT2 as a novel biomarker of inflammation-related cardiac dysfunction in atrial fibrillation
Atrial fibrillation (AF) is a common critical cause of stroke and cardiac dysfunction worldwide with lifetime risks. Viral infection and inflammatory response with myocardial involvement may lead to an increase in AF-related mortality. To dissect the potential sequelae of viral infection in AF patie...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655688/ https://www.ncbi.nlm.nih.gov/pubmed/38025532 http://dx.doi.org/10.1515/med-2023-0834 |
Sumario: | Atrial fibrillation (AF) is a common critical cause of stroke and cardiac dysfunction worldwide with lifetime risks. Viral infection and inflammatory response with myocardial involvement may lead to an increase in AF-related mortality. To dissect the potential sequelae of viral infection in AF patients, especially the coronavirus disease 2019 (COVID-19), based on AF and COVID-19 databases from Gene Expression Omnibus, weighted gene co-expression network analysis was used to identify key genes in heart tissues and peripheral blood mononuclear cells. Here, HSCT, PSMB9, STAT2, and TNFSF13B were identified as common risk genes of AF and COVID-19 patients. Correlation analysis of these genes with AF and COVID-19 showed a positive disease relevance. silencing of STAT2 by small interfering RNA significantly rescued SARS-CoV-2 XBB1.5 pseudovirus-induced cardiac cell contraction dysfunction in vitro. In conclusion, we identified STAT2 may be a novel biomarker of inflammation-related cardiac dysfunction in AF. |
---|