Cargando…
Domain-adaptive neural networks improve supervised machine learning based on simulated population genetic data
Investigators have recently introduced powerful methods for population genetic inference that rely on supervised machine learning from simulated data. Despite their performance advantages, these methods can fail when the simulated training data does not adequately resemble data from the real world....
Autores principales: | Mo, Ziyi, Siepel, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655966/ https://www.ncbi.nlm.nih.gov/pubmed/37934781 http://dx.doi.org/10.1371/journal.pgen.1011032 |
Ejemplares similares
-
Domain-adaptive neural networks improve supervised machine learning based on simulated population genetic data
por: Mo, Ziyi, et al.
Publicado: (2023) -
Supervised Machine Learning for Population Genetics: A New Paradigm
por: Schrider, Daniel R., et al.
Publicado: (2018) -
Domain Adaptation Based on Semi-Supervised Cross-Domain Mean Discriminative Analysis and Kernel Transfer Extreme Learning Machine
por: Li, Xinghai, et al.
Publicado: (2023) -
Supervised Learning with Complex-valued Neural Networks
por: Suresh, Sundaram, et al.
Publicado: (2013) -
Supervised Learning of Neural Networks for Active Queue Management in the Internet
por: Szyguła, Jakub, et al.
Publicado: (2021)