Cargando…
Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae
Macroalgae can modify coral reef community structure and ecosystem function through a variety of mechanisms, including mediation of biogeochemistry through photosynthesis and the associated production of dissolved organic carbon (DOC). Ocean acidification has the potential to fuel macroalgal growth...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655979/ https://www.ncbi.nlm.nih.gov/pubmed/37976304 http://dx.doi.org/10.1371/journal.pone.0286661 |
_version_ | 1785148003998236672 |
---|---|
author | Page, Heather N. McCoy, Sophie Spencer, Robert G. M. Burnham, Katherine A. Hewett, Clay Johnson, Maggie |
author_facet | Page, Heather N. McCoy, Sophie Spencer, Robert G. M. Burnham, Katherine A. Hewett, Clay Johnson, Maggie |
author_sort | Page, Heather N. |
collection | PubMed |
description | Macroalgae can modify coral reef community structure and ecosystem function through a variety of mechanisms, including mediation of biogeochemistry through photosynthesis and the associated production of dissolved organic carbon (DOC). Ocean acidification has the potential to fuel macroalgal growth and photosynthesis and alter DOC production, but responses across taxa and regions are widely varied and difficult to predict. Focusing on algal taxa from two different functional groups on Caribbean coral reefs, we exposed fleshy (Dictyota spp.) and calcifying (Halimeda tuna) macroalgae to ambient and low seawater pH for 25 days in an outdoor experimental system in the Florida Keys. We quantified algal growth, calcification, photophysiology, and DOC production across pH treatments. We observed no significant differences in the growth or photophysiology of either species between treatments, except for lower chlorophyll b concentrations in Dictyota spp. in response to low pH. We were unable to quantify changes in DOC production. The tolerance of Dictyota and Halimeda to near-future seawater carbonate chemistry and stability of photophysiology, suggests that acidification alone is unlikely to change biogeochemical processes associated with algal photosynthesis in these species. Additional research is needed to fully understand how taxa from these functional groups sourced from a wide range of environmental conditions regulate photosynthesis (via carbon uptake strategies) and how this impacts their DOC production. Understanding these species-specific responses to future acidification will allow us to more accurately model and predict the indirect impacts of macroalgae on coral health and reef ecosystem processes. |
format | Online Article Text |
id | pubmed-10655979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106559792023-11-17 Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae Page, Heather N. McCoy, Sophie Spencer, Robert G. M. Burnham, Katherine A. Hewett, Clay Johnson, Maggie PLoS One Research Article Macroalgae can modify coral reef community structure and ecosystem function through a variety of mechanisms, including mediation of biogeochemistry through photosynthesis and the associated production of dissolved organic carbon (DOC). Ocean acidification has the potential to fuel macroalgal growth and photosynthesis and alter DOC production, but responses across taxa and regions are widely varied and difficult to predict. Focusing on algal taxa from two different functional groups on Caribbean coral reefs, we exposed fleshy (Dictyota spp.) and calcifying (Halimeda tuna) macroalgae to ambient and low seawater pH for 25 days in an outdoor experimental system in the Florida Keys. We quantified algal growth, calcification, photophysiology, and DOC production across pH treatments. We observed no significant differences in the growth or photophysiology of either species between treatments, except for lower chlorophyll b concentrations in Dictyota spp. in response to low pH. We were unable to quantify changes in DOC production. The tolerance of Dictyota and Halimeda to near-future seawater carbonate chemistry and stability of photophysiology, suggests that acidification alone is unlikely to change biogeochemical processes associated with algal photosynthesis in these species. Additional research is needed to fully understand how taxa from these functional groups sourced from a wide range of environmental conditions regulate photosynthesis (via carbon uptake strategies) and how this impacts their DOC production. Understanding these species-specific responses to future acidification will allow us to more accurately model and predict the indirect impacts of macroalgae on coral health and reef ecosystem processes. Public Library of Science 2023-11-17 /pmc/articles/PMC10655979/ /pubmed/37976304 http://dx.doi.org/10.1371/journal.pone.0286661 Text en © 2023 Page et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Page, Heather N. McCoy, Sophie Spencer, Robert G. M. Burnham, Katherine A. Hewett, Clay Johnson, Maggie Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae |
title | Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae |
title_full | Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae |
title_fullStr | Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae |
title_full_unstemmed | Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae |
title_short | Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae |
title_sort | effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655979/ https://www.ncbi.nlm.nih.gov/pubmed/37976304 http://dx.doi.org/10.1371/journal.pone.0286661 |
work_keys_str_mv | AT pageheathern effectsofoceanacidificationongrowthandphotophysiologyoftwotropicalreefmacroalgae AT mccoysophie effectsofoceanacidificationongrowthandphotophysiologyoftwotropicalreefmacroalgae AT spencerrobertgm effectsofoceanacidificationongrowthandphotophysiologyoftwotropicalreefmacroalgae AT burnhamkatherinea effectsofoceanacidificationongrowthandphotophysiologyoftwotropicalreefmacroalgae AT hewettclay effectsofoceanacidificationongrowthandphotophysiologyoftwotropicalreefmacroalgae AT johnsonmaggie effectsofoceanacidificationongrowthandphotophysiologyoftwotropicalreefmacroalgae |