Cargando…

Beam search decoder for enhancing sequence decoding speed in single-molecule peptide sequencing data

Next-generation single-molecule protein sequencing technologies have the potential to significantly accelerate biomedical research. These technologies offer sensitivity and scalability for proteomic analysis. One auspicious method is fluorosequencing, which involves: cutting naturalized proteins int...

Descripción completa

Detalles Bibliográficos
Autores principales: Kipen, Javier, Jaldén, Joakim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656014/
https://www.ncbi.nlm.nih.gov/pubmed/37934778
http://dx.doi.org/10.1371/journal.pcbi.1011345
Descripción
Sumario:Next-generation single-molecule protein sequencing technologies have the potential to significantly accelerate biomedical research. These technologies offer sensitivity and scalability for proteomic analysis. One auspicious method is fluorosequencing, which involves: cutting naturalized proteins into peptides, attaching fluorophores to specific amino acids, and observing variations in light intensity as one amino acid is removed at a time. The original peptide is classified from the sequence of light-intensity reads, and proteins can subsequently be recognized with this information. The amino acid step removal is achieved by attaching the peptides to a wall on the C-terminal and using a process called Edman Degradation to remove an amino acid from the N-Terminal. Even though a framework (Whatprot) has been proposed for the peptide classification task, processing times remain restrictive due to the massively parallel data acquisicion system. In this paper, we propose a new beam search decoder with a novel state formulation that obtains considerably lower processing times at the expense of only a slight accuracy drop compared to Whatprot. Furthermore, we explore how our novel state formulation may lead to even faster decoders in the future.