Cargando…
Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling
BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kin...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656020/ https://www.ncbi.nlm.nih.gov/pubmed/37934770 http://dx.doi.org/10.1371/journal.pgen.1011005 |
_version_ | 1785136926599151616 |
---|---|
author | Marom, Ronit Zhang, Bo Washington, Megan E. Song, I-Wen Burrage, Lindsay C. Rossi, Vittoria C. Berrier, Ava S. Lindsey, Anika Lesinski, Jacob Nonet, Michael L. Chen, Jian Baldridge, Dustin Silverman, Gary A. Sutton, V. Reid Rosenfeld, Jill A. Tran, Alyssa A. Hicks, M. John Murdock, David R. Dai, Hongzheng Weis, MaryAnn Jhangiani, Shalini N. Muzny, Donna M. Gibbs, Richard A. Caswell, Richard Pottinger, Carrie Cilliers, Deirdre Stals, Karen Eyre, David Krakow, Deborah Schedl, Tim Pak, Stephen C. Lee, Brendan H. |
author_facet | Marom, Ronit Zhang, Bo Washington, Megan E. Song, I-Wen Burrage, Lindsay C. Rossi, Vittoria C. Berrier, Ava S. Lindsey, Anika Lesinski, Jacob Nonet, Michael L. Chen, Jian Baldridge, Dustin Silverman, Gary A. Sutton, V. Reid Rosenfeld, Jill A. Tran, Alyssa A. Hicks, M. John Murdock, David R. Dai, Hongzheng Weis, MaryAnn Jhangiani, Shalini N. Muzny, Donna M. Gibbs, Richard A. Caswell, Richard Pottinger, Carrie Cilliers, Deirdre Stals, Karen Eyre, David Krakow, Deborah Schedl, Tim Pak, Stephen C. Lee, Brendan H. |
author_sort | Marom, Ronit |
collection | PubMed |
description | BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development. |
format | Online Article Text |
id | pubmed-10656020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106560202023-11-07 Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling Marom, Ronit Zhang, Bo Washington, Megan E. Song, I-Wen Burrage, Lindsay C. Rossi, Vittoria C. Berrier, Ava S. Lindsey, Anika Lesinski, Jacob Nonet, Michael L. Chen, Jian Baldridge, Dustin Silverman, Gary A. Sutton, V. Reid Rosenfeld, Jill A. Tran, Alyssa A. Hicks, M. John Murdock, David R. Dai, Hongzheng Weis, MaryAnn Jhangiani, Shalini N. Muzny, Donna M. Gibbs, Richard A. Caswell, Richard Pottinger, Carrie Cilliers, Deirdre Stals, Karen Eyre, David Krakow, Deborah Schedl, Tim Pak, Stephen C. Lee, Brendan H. PLoS Genet Research Article BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development. Public Library of Science 2023-11-07 /pmc/articles/PMC10656020/ /pubmed/37934770 http://dx.doi.org/10.1371/journal.pgen.1011005 Text en © 2023 Marom et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Marom, Ronit Zhang, Bo Washington, Megan E. Song, I-Wen Burrage, Lindsay C. Rossi, Vittoria C. Berrier, Ava S. Lindsey, Anika Lesinski, Jacob Nonet, Michael L. Chen, Jian Baldridge, Dustin Silverman, Gary A. Sutton, V. Reid Rosenfeld, Jill A. Tran, Alyssa A. Hicks, M. John Murdock, David R. Dai, Hongzheng Weis, MaryAnn Jhangiani, Shalini N. Muzny, Donna M. Gibbs, Richard A. Caswell, Richard Pottinger, Carrie Cilliers, Deirdre Stals, Karen Eyre, David Krakow, Deborah Schedl, Tim Pak, Stephen C. Lee, Brendan H. Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling |
title | Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling |
title_full | Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling |
title_fullStr | Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling |
title_full_unstemmed | Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling |
title_short | Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling |
title_sort | dominant negative variants in kif5b cause osteogenesis imperfecta via down regulation of mtor signaling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656020/ https://www.ncbi.nlm.nih.gov/pubmed/37934770 http://dx.doi.org/10.1371/journal.pgen.1011005 |
work_keys_str_mv | AT maromronit dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT zhangbo dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT washingtonmegane dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT songiwen dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT burragelindsayc dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT rossivittoriac dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT berrieravas dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT lindseyanika dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT lesinskijacob dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT nonetmichaell dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT chenjian dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT baldridgedustin dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT silvermangarya dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT suttonvreid dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT rosenfeldjilla dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT tranalyssaa dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT hicksmjohn dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT murdockdavidr dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT daihongzheng dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT weismaryann dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT jhangianishalinin dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT muznydonnam dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT gibbsricharda dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT caswellrichard dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT pottingercarrie dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT cilliersdeirdre dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT stalskaren dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT eyredavid dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT krakowdeborah dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT schedltim dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT pakstephenc dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling AT leebrendanh dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling |