Cargando…

Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kin...

Descripción completa

Detalles Bibliográficos
Autores principales: Marom, Ronit, Zhang, Bo, Washington, Megan E., Song, I-Wen, Burrage, Lindsay C., Rossi, Vittoria C., Berrier, Ava S., Lindsey, Anika, Lesinski, Jacob, Nonet, Michael L., Chen, Jian, Baldridge, Dustin, Silverman, Gary A., Sutton, V. Reid, Rosenfeld, Jill A., Tran, Alyssa A., Hicks, M. John, Murdock, David R., Dai, Hongzheng, Weis, MaryAnn, Jhangiani, Shalini N., Muzny, Donna M., Gibbs, Richard A., Caswell, Richard, Pottinger, Carrie, Cilliers, Deirdre, Stals, Karen, Eyre, David, Krakow, Deborah, Schedl, Tim, Pak, Stephen C., Lee, Brendan H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656020/
https://www.ncbi.nlm.nih.gov/pubmed/37934770
http://dx.doi.org/10.1371/journal.pgen.1011005
_version_ 1785136926599151616
author Marom, Ronit
Zhang, Bo
Washington, Megan E.
Song, I-Wen
Burrage, Lindsay C.
Rossi, Vittoria C.
Berrier, Ava S.
Lindsey, Anika
Lesinski, Jacob
Nonet, Michael L.
Chen, Jian
Baldridge, Dustin
Silverman, Gary A.
Sutton, V. Reid
Rosenfeld, Jill A.
Tran, Alyssa A.
Hicks, M. John
Murdock, David R.
Dai, Hongzheng
Weis, MaryAnn
Jhangiani, Shalini N.
Muzny, Donna M.
Gibbs, Richard A.
Caswell, Richard
Pottinger, Carrie
Cilliers, Deirdre
Stals, Karen
Eyre, David
Krakow, Deborah
Schedl, Tim
Pak, Stephen C.
Lee, Brendan H.
author_facet Marom, Ronit
Zhang, Bo
Washington, Megan E.
Song, I-Wen
Burrage, Lindsay C.
Rossi, Vittoria C.
Berrier, Ava S.
Lindsey, Anika
Lesinski, Jacob
Nonet, Michael L.
Chen, Jian
Baldridge, Dustin
Silverman, Gary A.
Sutton, V. Reid
Rosenfeld, Jill A.
Tran, Alyssa A.
Hicks, M. John
Murdock, David R.
Dai, Hongzheng
Weis, MaryAnn
Jhangiani, Shalini N.
Muzny, Donna M.
Gibbs, Richard A.
Caswell, Richard
Pottinger, Carrie
Cilliers, Deirdre
Stals, Karen
Eyre, David
Krakow, Deborah
Schedl, Tim
Pak, Stephen C.
Lee, Brendan H.
author_sort Marom, Ronit
collection PubMed
description BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.
format Online
Article
Text
id pubmed-10656020
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-106560202023-11-07 Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling Marom, Ronit Zhang, Bo Washington, Megan E. Song, I-Wen Burrage, Lindsay C. Rossi, Vittoria C. Berrier, Ava S. Lindsey, Anika Lesinski, Jacob Nonet, Michael L. Chen, Jian Baldridge, Dustin Silverman, Gary A. Sutton, V. Reid Rosenfeld, Jill A. Tran, Alyssa A. Hicks, M. John Murdock, David R. Dai, Hongzheng Weis, MaryAnn Jhangiani, Shalini N. Muzny, Donna M. Gibbs, Richard A. Caswell, Richard Pottinger, Carrie Cilliers, Deirdre Stals, Karen Eyre, David Krakow, Deborah Schedl, Tim Pak, Stephen C. Lee, Brendan H. PLoS Genet Research Article BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development. Public Library of Science 2023-11-07 /pmc/articles/PMC10656020/ /pubmed/37934770 http://dx.doi.org/10.1371/journal.pgen.1011005 Text en © 2023 Marom et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Marom, Ronit
Zhang, Bo
Washington, Megan E.
Song, I-Wen
Burrage, Lindsay C.
Rossi, Vittoria C.
Berrier, Ava S.
Lindsey, Anika
Lesinski, Jacob
Nonet, Michael L.
Chen, Jian
Baldridge, Dustin
Silverman, Gary A.
Sutton, V. Reid
Rosenfeld, Jill A.
Tran, Alyssa A.
Hicks, M. John
Murdock, David R.
Dai, Hongzheng
Weis, MaryAnn
Jhangiani, Shalini N.
Muzny, Donna M.
Gibbs, Richard A.
Caswell, Richard
Pottinger, Carrie
Cilliers, Deirdre
Stals, Karen
Eyre, David
Krakow, Deborah
Schedl, Tim
Pak, Stephen C.
Lee, Brendan H.
Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling
title Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling
title_full Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling
title_fullStr Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling
title_full_unstemmed Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling
title_short Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling
title_sort dominant negative variants in kif5b cause osteogenesis imperfecta via down regulation of mtor signaling
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656020/
https://www.ncbi.nlm.nih.gov/pubmed/37934770
http://dx.doi.org/10.1371/journal.pgen.1011005
work_keys_str_mv AT maromronit dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT zhangbo dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT washingtonmegane dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT songiwen dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT burragelindsayc dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT rossivittoriac dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT berrieravas dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT lindseyanika dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT lesinskijacob dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT nonetmichaell dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT chenjian dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT baldridgedustin dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT silvermangarya dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT suttonvreid dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT rosenfeldjilla dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT tranalyssaa dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT hicksmjohn dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT murdockdavidr dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT daihongzheng dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT weismaryann dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT jhangianishalinin dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT muznydonnam dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT gibbsricharda dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT caswellrichard dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT pottingercarrie dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT cilliersdeirdre dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT stalskaren dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT eyredavid dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT krakowdeborah dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT schedltim dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT pakstephenc dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling
AT leebrendanh dominantnegativevariantsinkif5bcauseosteogenesisimperfectaviadownregulationofmtorsignaling