Cargando…
Maximum Augmented Empirical Likelihood Estimation of Categorical Marginal Models for Large Sparse Contingency Tables
Categorical marginal models (CMMs) are flexible tools for modelling dependent or clustered categorical data, when the dependencies themselves are not of interest. A major limitation of maximum likelihood (ML) estimation of CMMs is that the size of the contingency table increases exponentially with t...
Autores principales: | van der Ark, L. Andries, Bergsma, Wicher P., Koopman, Letty |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656332/ https://www.ncbi.nlm.nih.gov/pubmed/37752345 http://dx.doi.org/10.1007/s11336-023-09932-7 |
Ejemplares similares
-
Penalized likelihood for sparse contingency tables with an application to full-length cDNA libraries
por: Dahinden, Corinne, et al.
Publicado: (2007) -
Power Analysis for the Wald, LR, Score, and Gradient Tests in a Marginal Maximum Likelihood Framework: Applications in IRT
por: Zimmer, Felix, et al.
Publicado: (2022) -
Restricted maximum likelihood estimation of covariances in sparse linear models
por: Neumaier, Arnold, et al.
Publicado: (1998) -
Recent developments in maximum likelihood estimation of MTMM models for categorical data
por: Jeon, Minjeong, et al.
Publicado: (2014) -
Maximum likelihood estimation of a social relations structural equation model
por: Nestler, Steffen, et al.
Publicado: (2020)