Cargando…
Diagnosing and Handling Common Violations of Missing at Random
Ignorable likelihood (IL) approaches are often used to handle missing data when estimating a multivariate model, such as a structural equation model. In this case, the likelihood is based on all available data, and no model is specified for the missing data mechanism. Inference proceeds via maximum...
Autores principales: | Ji, Feng, Rabe-Hesketh, Sophia, Skrondal, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656344/ https://www.ncbi.nlm.nih.gov/pubmed/36600171 http://dx.doi.org/10.1007/s11336-022-09896-0 |
Ejemplares similares
-
The Role of Conditional Likelihoods in Latent Variable Modeling
por: Skrondal, Anders, et al.
Publicado: (2022) -
Ignoring Non-ignorable Missingness
por: Rabe-Hesketh, Sophia, et al.
Publicado: (2022) -
Strategies for Handling Missing Data in Electronic Health Record Derived Data
por: Wells, Brian J., et al.
Publicado: (2013) -
A general method for handling missing binary outcome data in randomized controlled trials
por: Jackson, Dan, et al.
Publicado: (2014) -
A comparison of different methods to handle missing data in the context of propensity score analysis
por: Choi, Jungyeon, et al.
Publicado: (2018)