Cargando…
Antiferromagnetic topological insulator with selectively gapped Dirac cones
Antiferromagnetic (AF) topological materials offer a fertile ground to explore a variety of quantum phenomena such as axion magnetoelectric dynamics and chiral Majorana fermions. To realize such intriguing states, it is essential to establish a direct link between electronic states and topology in t...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656484/ https://www.ncbi.nlm.nih.gov/pubmed/37978297 http://dx.doi.org/10.1038/s41467-023-42782-6 |
_version_ | 1785148041166061568 |
---|---|
author | Honma, A. Takane, D. Souma, S. Yamauchi, K. Wang, Y. Nakayama, K. Sugawara, K. Kitamura, M. Horiba, K. Kumigashira, H. Tanaka, K. Kim, T. K. Cacho, C. Oguchi, T. Takahashi, T. Ando, Yoichi Sato, T. |
author_facet | Honma, A. Takane, D. Souma, S. Yamauchi, K. Wang, Y. Nakayama, K. Sugawara, K. Kitamura, M. Horiba, K. Kumigashira, H. Tanaka, K. Kim, T. K. Cacho, C. Oguchi, T. Takahashi, T. Ando, Yoichi Sato, T. |
author_sort | Honma, A. |
collection | PubMed |
description | Antiferromagnetic (AF) topological materials offer a fertile ground to explore a variety of quantum phenomena such as axion magnetoelectric dynamics and chiral Majorana fermions. To realize such intriguing states, it is essential to establish a direct link between electronic states and topology in the AF phase, whereas this has been challenging because of the lack of a suitable materials platform. Here we report the experimental realization of the AF topological-insulator phase in NdBi. By using micro-focused angle-resolved photoemission spectroscopy, we discovered contrasting surface electronic states for two types of AF domains; the surface having the out-of-plane component in the AF-ordering vector displays Dirac-cone states with a gigantic energy gap, whereas the surface parallel to the AF-ordering vector hosts gapless Dirac states despite the time-reversal-symmetry breaking. The present results establish an essential role of combined symmetry to protect massless Dirac fermions under the presence of AF order and widen opportunities to realize exotic phenomena utilizing AF topological materials. |
format | Online Article Text |
id | pubmed-10656484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106564842023-11-17 Antiferromagnetic topological insulator with selectively gapped Dirac cones Honma, A. Takane, D. Souma, S. Yamauchi, K. Wang, Y. Nakayama, K. Sugawara, K. Kitamura, M. Horiba, K. Kumigashira, H. Tanaka, K. Kim, T. K. Cacho, C. Oguchi, T. Takahashi, T. Ando, Yoichi Sato, T. Nat Commun Article Antiferromagnetic (AF) topological materials offer a fertile ground to explore a variety of quantum phenomena such as axion magnetoelectric dynamics and chiral Majorana fermions. To realize such intriguing states, it is essential to establish a direct link between electronic states and topology in the AF phase, whereas this has been challenging because of the lack of a suitable materials platform. Here we report the experimental realization of the AF topological-insulator phase in NdBi. By using micro-focused angle-resolved photoemission spectroscopy, we discovered contrasting surface electronic states for two types of AF domains; the surface having the out-of-plane component in the AF-ordering vector displays Dirac-cone states with a gigantic energy gap, whereas the surface parallel to the AF-ordering vector hosts gapless Dirac states despite the time-reversal-symmetry breaking. The present results establish an essential role of combined symmetry to protect massless Dirac fermions under the presence of AF order and widen opportunities to realize exotic phenomena utilizing AF topological materials. Nature Publishing Group UK 2023-11-17 /pmc/articles/PMC10656484/ /pubmed/37978297 http://dx.doi.org/10.1038/s41467-023-42782-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Honma, A. Takane, D. Souma, S. Yamauchi, K. Wang, Y. Nakayama, K. Sugawara, K. Kitamura, M. Horiba, K. Kumigashira, H. Tanaka, K. Kim, T. K. Cacho, C. Oguchi, T. Takahashi, T. Ando, Yoichi Sato, T. Antiferromagnetic topological insulator with selectively gapped Dirac cones |
title | Antiferromagnetic topological insulator with selectively gapped Dirac cones |
title_full | Antiferromagnetic topological insulator with selectively gapped Dirac cones |
title_fullStr | Antiferromagnetic topological insulator with selectively gapped Dirac cones |
title_full_unstemmed | Antiferromagnetic topological insulator with selectively gapped Dirac cones |
title_short | Antiferromagnetic topological insulator with selectively gapped Dirac cones |
title_sort | antiferromagnetic topological insulator with selectively gapped dirac cones |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656484/ https://www.ncbi.nlm.nih.gov/pubmed/37978297 http://dx.doi.org/10.1038/s41467-023-42782-6 |
work_keys_str_mv | AT honmaa antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT takaned antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT soumas antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT yamauchik antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT wangy antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT nakayamak antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT sugawarak antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT kitamuram antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT horibak antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT kumigashirah antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT tanakak antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT kimtk antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT cachoc antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT oguchit antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT takahashit antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT andoyoichi antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones AT satot antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones |