Cargando…

Antiferromagnetic topological insulator with selectively gapped Dirac cones

Antiferromagnetic (AF) topological materials offer a fertile ground to explore a variety of quantum phenomena such as axion magnetoelectric dynamics and chiral Majorana fermions. To realize such intriguing states, it is essential to establish a direct link between electronic states and topology in t...

Descripción completa

Detalles Bibliográficos
Autores principales: Honma, A., Takane, D., Souma, S., Yamauchi, K., Wang, Y., Nakayama, K., Sugawara, K., Kitamura, M., Horiba, K., Kumigashira, H., Tanaka, K., Kim, T. K., Cacho, C., Oguchi, T., Takahashi, T., Ando, Yoichi, Sato, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656484/
https://www.ncbi.nlm.nih.gov/pubmed/37978297
http://dx.doi.org/10.1038/s41467-023-42782-6
_version_ 1785148041166061568
author Honma, A.
Takane, D.
Souma, S.
Yamauchi, K.
Wang, Y.
Nakayama, K.
Sugawara, K.
Kitamura, M.
Horiba, K.
Kumigashira, H.
Tanaka, K.
Kim, T. K.
Cacho, C.
Oguchi, T.
Takahashi, T.
Ando, Yoichi
Sato, T.
author_facet Honma, A.
Takane, D.
Souma, S.
Yamauchi, K.
Wang, Y.
Nakayama, K.
Sugawara, K.
Kitamura, M.
Horiba, K.
Kumigashira, H.
Tanaka, K.
Kim, T. K.
Cacho, C.
Oguchi, T.
Takahashi, T.
Ando, Yoichi
Sato, T.
author_sort Honma, A.
collection PubMed
description Antiferromagnetic (AF) topological materials offer a fertile ground to explore a variety of quantum phenomena such as axion magnetoelectric dynamics and chiral Majorana fermions. To realize such intriguing states, it is essential to establish a direct link between electronic states and topology in the AF phase, whereas this has been challenging because of the lack of a suitable materials platform. Here we report the experimental realization of the AF topological-insulator phase in NdBi. By using micro-focused angle-resolved photoemission spectroscopy, we discovered contrasting surface electronic states for two types of AF domains; the surface having the out-of-plane component in the AF-ordering vector displays Dirac-cone states with a gigantic energy gap, whereas the surface parallel to the AF-ordering vector hosts gapless Dirac states despite the time-reversal-symmetry breaking. The present results establish an essential role of combined symmetry to protect massless Dirac fermions under the presence of AF order and widen opportunities to realize exotic phenomena utilizing AF topological materials.
format Online
Article
Text
id pubmed-10656484
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106564842023-11-17 Antiferromagnetic topological insulator with selectively gapped Dirac cones Honma, A. Takane, D. Souma, S. Yamauchi, K. Wang, Y. Nakayama, K. Sugawara, K. Kitamura, M. Horiba, K. Kumigashira, H. Tanaka, K. Kim, T. K. Cacho, C. Oguchi, T. Takahashi, T. Ando, Yoichi Sato, T. Nat Commun Article Antiferromagnetic (AF) topological materials offer a fertile ground to explore a variety of quantum phenomena such as axion magnetoelectric dynamics and chiral Majorana fermions. To realize such intriguing states, it is essential to establish a direct link between electronic states and topology in the AF phase, whereas this has been challenging because of the lack of a suitable materials platform. Here we report the experimental realization of the AF topological-insulator phase in NdBi. By using micro-focused angle-resolved photoemission spectroscopy, we discovered contrasting surface electronic states for two types of AF domains; the surface having the out-of-plane component in the AF-ordering vector displays Dirac-cone states with a gigantic energy gap, whereas the surface parallel to the AF-ordering vector hosts gapless Dirac states despite the time-reversal-symmetry breaking. The present results establish an essential role of combined symmetry to protect massless Dirac fermions under the presence of AF order and widen opportunities to realize exotic phenomena utilizing AF topological materials. Nature Publishing Group UK 2023-11-17 /pmc/articles/PMC10656484/ /pubmed/37978297 http://dx.doi.org/10.1038/s41467-023-42782-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Honma, A.
Takane, D.
Souma, S.
Yamauchi, K.
Wang, Y.
Nakayama, K.
Sugawara, K.
Kitamura, M.
Horiba, K.
Kumigashira, H.
Tanaka, K.
Kim, T. K.
Cacho, C.
Oguchi, T.
Takahashi, T.
Ando, Yoichi
Sato, T.
Antiferromagnetic topological insulator with selectively gapped Dirac cones
title Antiferromagnetic topological insulator with selectively gapped Dirac cones
title_full Antiferromagnetic topological insulator with selectively gapped Dirac cones
title_fullStr Antiferromagnetic topological insulator with selectively gapped Dirac cones
title_full_unstemmed Antiferromagnetic topological insulator with selectively gapped Dirac cones
title_short Antiferromagnetic topological insulator with selectively gapped Dirac cones
title_sort antiferromagnetic topological insulator with selectively gapped dirac cones
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656484/
https://www.ncbi.nlm.nih.gov/pubmed/37978297
http://dx.doi.org/10.1038/s41467-023-42782-6
work_keys_str_mv AT honmaa antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT takaned antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT soumas antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT yamauchik antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT wangy antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT nakayamak antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT sugawarak antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT kitamuram antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT horibak antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT kumigashirah antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT tanakak antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT kimtk antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT cachoc antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT oguchit antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT takahashit antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT andoyoichi antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones
AT satot antiferromagnetictopologicalinsulatorwithselectivelygappeddiraccones