Cargando…

Flexural capacity of eco-friendly reinforced concrete beams

In the construction industry, concrete is the most utilized building material. It is produced from different natural resources such as sand and gravel, as well as cement. The production of concrete is causing harm to the environment, yet its use became a necessity. To solve this humongous environmen...

Descripción completa

Detalles Bibliográficos
Autores principales: Gerges, Nagib N., Issa, Camille A., Khalil, Nariman J., Abdul Khalek, Lara, Abdo, Serge, Abdulwahab, Yehia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656508/
https://www.ncbi.nlm.nih.gov/pubmed/37978199
http://dx.doi.org/10.1038/s41598-023-47283-6
Descripción
Sumario:In the construction industry, concrete is the most utilized building material. It is produced from different natural resources such as sand and gravel, as well as cement. The production of concrete is causing harm to the environment, yet its use became a necessity. To solve this humongous environmental challenge, many researchers devoted a considerable effort to partially replacing concrete mix components with waste material derived from glass, plastics, aluminum, wood ash, construction and demolition wastes, or tires. In the current study, a novel effort was conducted to incorporate all the above-mentioned wastes in a concrete mix design and to assess its performance. Five recycled mix designs were explored and based on the concrete mechanical properties derived, an optimum mix was realized. The optimum mix incorporated the following waste percentages: 2% crumb rubber (CR) partially replacing sand, 20% powdered glass (PG) partially replacing sand, 50% recycled concrete aggregates (RCA) partially replacing coarse aggregates, and the addition of 0.5% plastic. The optimum recycled mix was utilized to cast a real-life-size reinforced concrete beam which was compared to a normal mix beam.