Cargando…
The linear framework II: using graph theory to analyse the transient regime of Markov processes
The linear framework uses finite, directed graphs with labelled edges to model biomolecular systems. Graph vertices represent chemical species or molecular states, edges represent reactions or transitions and edge labels represent rates that also describe how the system is interacting with its envir...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656611/ https://www.ncbi.nlm.nih.gov/pubmed/38020901 http://dx.doi.org/10.3389/fcell.2023.1233808 |
_version_ | 1785137042793955328 |
---|---|
author | Nam, Kee-Myoung Gunawardena, Jeremy |
author_facet | Nam, Kee-Myoung Gunawardena, Jeremy |
author_sort | Nam, Kee-Myoung |
collection | PubMed |
description | The linear framework uses finite, directed graphs with labelled edges to model biomolecular systems. Graph vertices represent chemical species or molecular states, edges represent reactions or transitions and edge labels represent rates that also describe how the system is interacting with its environment. The present paper is a sequel to a recent review of the framework that focussed on how graph-theoretic methods give insight into steady states as rational algebraic functions of the edge labels. Here, we focus on the transient regime for systems that correspond to continuous-time Markov processes. In this case, the graph specifies the infinitesimal generator of the process. We show how the moments of the first-passage time distribution, and related quantities, such as splitting probabilities and conditional first-passage times, can also be expressed as rational algebraic functions of the labels. This capability is timely, as new experimental methods are finally giving access to the transient dynamic regime and revealing the computations and information processing that occur before a steady state is reached. We illustrate the concepts, methods and formulas through examples and show how the results may be used to illuminate previous findings in the literature. |
format | Online Article Text |
id | pubmed-10656611 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106566112023-01-01 The linear framework II: using graph theory to analyse the transient regime of Markov processes Nam, Kee-Myoung Gunawardena, Jeremy Front Cell Dev Biol Cell and Developmental Biology The linear framework uses finite, directed graphs with labelled edges to model biomolecular systems. Graph vertices represent chemical species or molecular states, edges represent reactions or transitions and edge labels represent rates that also describe how the system is interacting with its environment. The present paper is a sequel to a recent review of the framework that focussed on how graph-theoretic methods give insight into steady states as rational algebraic functions of the edge labels. Here, we focus on the transient regime for systems that correspond to continuous-time Markov processes. In this case, the graph specifies the infinitesimal generator of the process. We show how the moments of the first-passage time distribution, and related quantities, such as splitting probabilities and conditional first-passage times, can also be expressed as rational algebraic functions of the labels. This capability is timely, as new experimental methods are finally giving access to the transient dynamic regime and revealing the computations and information processing that occur before a steady state is reached. We illustrate the concepts, methods and formulas through examples and show how the results may be used to illuminate previous findings in the literature. Frontiers Media S.A. 2023-11-03 /pmc/articles/PMC10656611/ /pubmed/38020901 http://dx.doi.org/10.3389/fcell.2023.1233808 Text en Copyright © 2023 Nam and Gunawardena. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Nam, Kee-Myoung Gunawardena, Jeremy The linear framework II: using graph theory to analyse the transient regime of Markov processes |
title | The linear framework II: using graph theory to analyse the transient regime of Markov processes |
title_full | The linear framework II: using graph theory to analyse the transient regime of Markov processes |
title_fullStr | The linear framework II: using graph theory to analyse the transient regime of Markov processes |
title_full_unstemmed | The linear framework II: using graph theory to analyse the transient regime of Markov processes |
title_short | The linear framework II: using graph theory to analyse the transient regime of Markov processes |
title_sort | linear framework ii: using graph theory to analyse the transient regime of markov processes |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656611/ https://www.ncbi.nlm.nih.gov/pubmed/38020901 http://dx.doi.org/10.3389/fcell.2023.1233808 |
work_keys_str_mv | AT namkeemyoung thelinearframeworkiiusinggraphtheorytoanalysethetransientregimeofmarkovprocesses AT gunawardenajeremy thelinearframeworkiiusinggraphtheorytoanalysethetransientregimeofmarkovprocesses AT namkeemyoung linearframeworkiiusinggraphtheorytoanalysethetransientregimeofmarkovprocesses AT gunawardenajeremy linearframeworkiiusinggraphtheorytoanalysethetransientregimeofmarkovprocesses |