Cargando…
Artificial intelligence in global health equity: an evaluation and discussion on the application of ChatGPT, in the Chinese National Medical Licensing Examination
BACKGROUND: The demand for healthcare is increasing globally, with notable disparities in access to resources, especially in Asia, Africa, and Latin America. The rapid development of Artificial Intelligence (AI) technologies, such as OpenAI’s ChatGPT, has shown promise in revolutionizing healthcare....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656681/ https://www.ncbi.nlm.nih.gov/pubmed/38020160 http://dx.doi.org/10.3389/fmed.2023.1237432 |
_version_ | 1785137057216069632 |
---|---|
author | Tong, Wenting Guan, Yongfu Chen, Jinping Huang, Xixuan Zhong, Yuting Zhang, Changrong Zhang, Hui |
author_facet | Tong, Wenting Guan, Yongfu Chen, Jinping Huang, Xixuan Zhong, Yuting Zhang, Changrong Zhang, Hui |
author_sort | Tong, Wenting |
collection | PubMed |
description | BACKGROUND: The demand for healthcare is increasing globally, with notable disparities in access to resources, especially in Asia, Africa, and Latin America. The rapid development of Artificial Intelligence (AI) technologies, such as OpenAI’s ChatGPT, has shown promise in revolutionizing healthcare. However, potential challenges, including the need for specialized medical training, privacy concerns, and language bias, require attention. METHODS: To assess the applicability and limitations of ChatGPT in Chinese and English settings, we designed an experiment evaluating its performance in the 2022 National Medical Licensing Examination (NMLE) in China. For a standardized evaluation, we used the comprehensive written part of the NMLE, translated into English by a bilingual expert. All questions were input into ChatGPT, which provided answers and reasons for choosing them. Responses were evaluated for “information quality” using the Likert scale. RESULTS: ChatGPT demonstrated a correct response rate of 81.25% for Chinese and 86.25% for English questions. Logistic regression analysis showed that neither the difficulty nor the subject matter of the questions was a significant factor in AI errors. The Brier Scores, indicating predictive accuracy, were 0.19 for Chinese and 0.14 for English, indicating good predictive performance. The average quality score for English responses was excellent (4.43 point), slightly higher than for Chinese (4.34 point). CONCLUSION: While AI language models like ChatGPT show promise for global healthcare, language bias is a key challenge. Ensuring that such technologies are robustly trained and sensitive to multiple languages and cultures is vital. Further research into AI’s role in healthcare, particularly in areas with limited resources, is warranted. |
format | Online Article Text |
id | pubmed-10656681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106566812023-10-19 Artificial intelligence in global health equity: an evaluation and discussion on the application of ChatGPT, in the Chinese National Medical Licensing Examination Tong, Wenting Guan, Yongfu Chen, Jinping Huang, Xixuan Zhong, Yuting Zhang, Changrong Zhang, Hui Front Med (Lausanne) Medicine BACKGROUND: The demand for healthcare is increasing globally, with notable disparities in access to resources, especially in Asia, Africa, and Latin America. The rapid development of Artificial Intelligence (AI) technologies, such as OpenAI’s ChatGPT, has shown promise in revolutionizing healthcare. However, potential challenges, including the need for specialized medical training, privacy concerns, and language bias, require attention. METHODS: To assess the applicability and limitations of ChatGPT in Chinese and English settings, we designed an experiment evaluating its performance in the 2022 National Medical Licensing Examination (NMLE) in China. For a standardized evaluation, we used the comprehensive written part of the NMLE, translated into English by a bilingual expert. All questions were input into ChatGPT, which provided answers and reasons for choosing them. Responses were evaluated for “information quality” using the Likert scale. RESULTS: ChatGPT demonstrated a correct response rate of 81.25% for Chinese and 86.25% for English questions. Logistic regression analysis showed that neither the difficulty nor the subject matter of the questions was a significant factor in AI errors. The Brier Scores, indicating predictive accuracy, were 0.19 for Chinese and 0.14 for English, indicating good predictive performance. The average quality score for English responses was excellent (4.43 point), slightly higher than for Chinese (4.34 point). CONCLUSION: While AI language models like ChatGPT show promise for global healthcare, language bias is a key challenge. Ensuring that such technologies are robustly trained and sensitive to multiple languages and cultures is vital. Further research into AI’s role in healthcare, particularly in areas with limited resources, is warranted. Frontiers Media S.A. 2023-10-19 /pmc/articles/PMC10656681/ /pubmed/38020160 http://dx.doi.org/10.3389/fmed.2023.1237432 Text en Copyright © 2023 Tong, Guan, Chen, Huang, Zhong, Zhang and Zhang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Medicine Tong, Wenting Guan, Yongfu Chen, Jinping Huang, Xixuan Zhong, Yuting Zhang, Changrong Zhang, Hui Artificial intelligence in global health equity: an evaluation and discussion on the application of ChatGPT, in the Chinese National Medical Licensing Examination |
title | Artificial intelligence in global health equity: an evaluation and discussion on the application of ChatGPT, in the Chinese National Medical Licensing Examination |
title_full | Artificial intelligence in global health equity: an evaluation and discussion on the application of ChatGPT, in the Chinese National Medical Licensing Examination |
title_fullStr | Artificial intelligence in global health equity: an evaluation and discussion on the application of ChatGPT, in the Chinese National Medical Licensing Examination |
title_full_unstemmed | Artificial intelligence in global health equity: an evaluation and discussion on the application of ChatGPT, in the Chinese National Medical Licensing Examination |
title_short | Artificial intelligence in global health equity: an evaluation and discussion on the application of ChatGPT, in the Chinese National Medical Licensing Examination |
title_sort | artificial intelligence in global health equity: an evaluation and discussion on the application of chatgpt, in the chinese national medical licensing examination |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656681/ https://www.ncbi.nlm.nih.gov/pubmed/38020160 http://dx.doi.org/10.3389/fmed.2023.1237432 |
work_keys_str_mv | AT tongwenting artificialintelligenceinglobalhealthequityanevaluationanddiscussionontheapplicationofchatgptinthechinesenationalmedicallicensingexamination AT guanyongfu artificialintelligenceinglobalhealthequityanevaluationanddiscussionontheapplicationofchatgptinthechinesenationalmedicallicensingexamination AT chenjinping artificialintelligenceinglobalhealthequityanevaluationanddiscussionontheapplicationofchatgptinthechinesenationalmedicallicensingexamination AT huangxixuan artificialintelligenceinglobalhealthequityanevaluationanddiscussionontheapplicationofchatgptinthechinesenationalmedicallicensingexamination AT zhongyuting artificialintelligenceinglobalhealthequityanevaluationanddiscussionontheapplicationofchatgptinthechinesenationalmedicallicensingexamination AT zhangchangrong artificialintelligenceinglobalhealthequityanevaluationanddiscussionontheapplicationofchatgptinthechinesenationalmedicallicensingexamination AT zhanghui artificialintelligenceinglobalhealthequityanevaluationanddiscussionontheapplicationofchatgptinthechinesenationalmedicallicensingexamination |