Cargando…
MiR-1278 targets CALD1 and suppresses the progression of gastric cancer via the MAPK pathway
This study aimed to investigate the interaction between miR-1278 and Caldesmon (CALD1) in gastric cancer (GC) and the regulatory mechanism. In both GC cells and tissues, the levels of CALD1, miR-1278, migration-related markers (E-cadherin, N-cadherin, and Snail), and MAPK signaling pathway-related p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656762/ https://www.ncbi.nlm.nih.gov/pubmed/38025524 http://dx.doi.org/10.1515/med-2023-0776 |
Sumario: | This study aimed to investigate the interaction between miR-1278 and Caldesmon (CALD1) in gastric cancer (GC) and the regulatory mechanism. In both GC cells and tissues, the levels of CALD1, miR-1278, migration-related markers (E-cadherin, N-cadherin, and Snail), and MAPK signaling pathway-related proteins were clarified using quantitative real-time PCR and western blotting analyses. The effects of miR-1278 and CALD1 on GC cell viability and migration were analyzed using CCK-8 and Transwell assays, respectively. The targeting effect of miR-1278 on CALD1 was investigated using bioinformatics prediction and a dual luciferase reporter assay. The effect of miR-1278 on tumor growth was estimated in vivo using a tumor xenograft assay. In GC, miR-1278 expression decreased, whereas CALD1 was highly expressed. Transfecting an miR-1278 mimic into cells inhibited the viability as well as migration of GC cells, and suppressed Ras, phosphorylated (p)-P38, and p-ERK1/2 protein levels. Moreover, miR-1278 targeted and negatively regulated CALD1 expression. CALD1 overexpression promoted GC cell survival and migration and activated the MAPK pathway. Treatment with an miR-1278 mimic partially rescued the changes caused by CALD1 overexpression. Overall, our study revealed that miR-1278 suppresses the malignant behavior of GC cells by targeting CALD1 and regulating the MAPK pathway. |
---|